设 (1+√2+√7)n=an+bn√2+cn√7+dn√14,其中 an,bn,cn,dn∈Z+,则 limn→∞a3nbncndn= ( )
A.1
B.2
C.7
D.14
答案 D.
解析 考虑对偶式{xn=(1+√2+√7)n,yn=(1−√2+√7)n,zn=(1+√2−√7)n,wn=(1−√2−√7)n,⟹{xn=an+bn√2+cn√7+dn√14,yn=an−bn√2+cn√7−dn√14,zn=an+bn√2−cn√7−dn√14,wn=an−bn√2−cn√7+dn√14,因此{4an=xn+yn+zn+wn,4√2bn=xn−yn+zn−wn,4√7cn=xn+yn−zn−wn,4√14dn=xn−yn−zn+wn,考虑到limn→∞ynxn=limn→∞znxn=limn→∞wnxn=0,可得limn→∞(4an)34√2bn⋅4√7cn⋅4√14dn=1⟹limn→∞a3nbncndn=14.