『3820992』已知等边六边形的三对对边分别平行,且三组对边之间的距离分别为 $192,195,237$,则此六边形的面积为_______.
2020年11月8日,兰琦提供.
解析
过 $A$ 作 $BC$ 的平行线,过 $C$ 作 $DE$ 的平行线,设 $P$ 为两条平行线的交点,连接 $PE$.由于 $ABCP$ 为菱形,于是 $PA=PC$,因此 $PC$ 与 $ED$ 平行且相等,$PA$ 与 $EF$ 平行且相等,因此 $PCDE,PEFA$ 均为菱形,如图.

记 $h_1=d(FA,CD)=192$,$h_2=d(BC,EF)=195$,$h_3=d(CD,Fa)=237$,等边六边形的每条边长均为 $a$,则六边形 $ABCDEF$ 的面积\[\begin{split} S&=[ABCP]+[CDEP]+[EFAP]\\ &=\dfrac {[ABCP]+[CDEF]}2+\dfrac{[CDEF]+[EFAP]}2+\dfrac{[EFAP]+[ABCP]}2\\ &=\dfrac 12a(h_1+h_2+h3),\end{split}\]设 $\angle ABC=\angle DEF=\alpha$,$\angle BCD=\angle EFA=\beta$,$\angle EFA=\angle BCD=\gamma$,则\[h_3=BC\sin\angle BCP+CD\sin\angle PCD=a(\sin\alpha+\sin\beta),\]类似的,有\[\begin{split} h_1=a(\sin\beta+\sin\gamma),\\ h_2=a(\sin\gamma+\sin\alpha),\end{split}\]于是\[\begin{cases} \sin\alpha=\dfrac{h_2+h_3-h_1}a=\dfrac{240}{a},\\ \sin\beta=\dfrac{h_3+h_1-h_2}a=\dfrac{234}a,\\ \sin\gamma=\dfrac{h_1+h_2-h_3}a=\dfrac{150}a,\end{cases}\]于是 $\alpha,\beta,\gamma$ 是边长为 $240,234,150$ 的三角形的各边对应内角的补角,因此\[|\cos\alpha|=\dfrac{234^2+150^2-240^2}{2\cdot 234\cdot 150}=\dfrac 7{25}\implies \sin\alpha=\dfrac{24}{25}\implies a=125,\]从而\[S=\dfrac 12a(h_1+h_2+h_3)=\dfrac 12\cdot 125\cdot 624=39000.\]
已知等边六边形(所有边长相等)的三对对边分别平行,且三组对边之间的距离分别为 192、195 和 237。设边长为 \(s\),三组对边距离对应的值分别为 \(d_1 = 192\),\(d_2 = 195\),\(d_3 = 237\)。
通过分析,该六边形为中心对称六边形。设从中心到顶点的向量为 \(\mathbf{A}\)、\(\mathbf{B}\)、\(\mathbf{C}\),则顶点为 \(\mathbf{A}\)、\(\mathbf{B}\)、\(\mathbf{C}\)、\(-\mathbf{A}\)、\(-\mathbf{B}\)、\(-\mathbf{C}\)。边长相等条件给出:
\[
|\mathbf{B} - \mathbf{A}| = s, \quad |\mathbf{C} - \mathbf{B}| = s, \quad |\mathbf{A} + \mathbf{C}| = s.
\]
对边之间的距离公式为:
- 边 \(\mathbf{A}\mathbf{B}\) 与 \(-\mathbf{A}-\mathbf{B}\) 的距离: \(d_{\mathbf{A}\mathbf{B}} = 2 |\mathbf{A} \times \mathbf{B}| / s\)
- 边 \(\mathbf{B}\mathbf{C}\) 与 \(-\mathbf{B}-\mathbf{C}\) 的距离: \(d_{\mathbf{B}\mathbf{C}} = 2 |\mathbf{B} \times \mathbf{C}| / s\)
- 边 \(\mathbf{C}\to-\mathbf{A}\) 与 \(-\mathbf{C}\to\mathbf{A}\) 的距离: \(d_{\mathbf{C}\mathbf{A}} = 2 |\mathbf{A} \times \mathbf{C}| / s\)
引入辅助向量:
\[
\mathbf{D} = \mathbf{B} - \mathbf{A}, \quad \mathbf{E} = \mathbf{C} - \mathbf{B}, \quad \mathbf{F} = \mathbf{A} + \mathbf{C}
\]
满足 \(|\mathbf{D}| = s\),\(|\mathbf{E}| = s\),\(|\mathbf{F}| = s\)。定义标量:
\[
P = \mathbf{F} \times \mathbf{D}, \quad Q = \mathbf{F} \times \mathbf{E}, \quad R = \mathbf{D} \times \mathbf{E}
\]
则距离公式化为:
\[
|\mathbf{A} \times \mathbf{B}| = \frac{1}{2} |P + R|, \quad |\mathbf{B} \times \mathbf{C}| = \frac{1}{2} |Q + R|, \quad |\mathbf{A} \times \mathbf{C}| = \frac{1}{2} |P + Q|
\]
即:
\[
|P + R| = d_1 s, \quad |Q + R| = d_2 s, \quad |P + Q| = d_3 s
\]
六边形面积 \(S\) 为:
\[
S = |\mathbf{A} \times \mathbf{B} + \mathbf{B} \times \mathbf{C} + \mathbf{A} \times \mathbf{C}| = |P + Q + R|
\]
设:
\[
u = P + R, \quad v = Q + R, \quad w = P + Q
\]
则:
\[
|u| = d_1 s, \quad |v| = d_2 s, \quad |w| = d_3 s
\]
并得:
\[
P + Q + R = \frac{u + v + w}{2}
\]
假设凸六边形且方向一致,取 \(u > 0\), \(v > 0\), \(w > 0\)(即 \(u = d_1 s\), \(v = d_2 s\), \(w = d_3 s\)),则:
\[
S = \left| \frac{u + v + w}{2} \right| = \frac{u + v + w}{2} = \frac{s}{2} (d_1 + d_2 + d_3)
\]
通过向量约束和距离公式,求解 \(s\)。由:
\[
P = \frac{u - v + w}{2}, \quad Q = \frac{-u + v + w}{2}, \quad R = \frac{u + v - w}{2}
\]
代入数值:
\[
u = 192s, \quad v = 195s, \quad w = 237s
\]
得:
\[
P = \frac{192s - 195s + 237s}{2} = \frac{234s}{2} = 117s
\]
\[
Q = \frac{-192s + 195s + 237s}{2} = \frac{240s}{2} = 120s
\]
\[
R = \frac{192s + 195s - 237s}{2} = \frac{150s}{2} = 75s
\]
由叉积模约束:
\[
|P| = 117s \leq |\mathbf{F}| |\mathbf{D}| = s^2 \implies s \geq 117
\]
\[
|Q| = 120s \leq |\mathbf{F}| |\mathbf{E}| = s^2 \implies s \geq 120
\]
\[
|R| = 75s \leq |\mathbf{D}| |\mathbf{E}| = s^2 \implies s \geq 75
\]
最强约束为 \(s \geq 120\)。利用点积关系:
\[
(\mathbf{F} \cdot \mathbf{D}) (\mathbf{F} \cdot \mathbf{E}) + P Q = s^2 (\mathbf{D} \cdot \mathbf{E})
\]
代入:
\[
\mathbf{F} \cdot \mathbf{D} = \pm \sqrt{s^4 - P^2}, \quad \mathbf{F} \cdot \mathbf{E} = \pm \sqrt{s^4 - Q^2}, \quad \mathbf{D} \cdot \mathbf{E} = \pm \sqrt{s^4 - R^2}
\]
取符号(基于凸性假设):
\[
\mathbf{F} \cdot \mathbf{D} > 0, \quad \mathbf{F} \cdot \mathbf{E} 0
\]
得方程:
\[
\sqrt{s^4 - (117s)^2} \cdot (-\sqrt{s^4 - (120s)^2}) + (117s)(120s) = s^2 \sqrt{s^4 - (75s)^2}
\]
简化(设 \(t = s^2\)):
\[
-\sqrt{(t - 117^2)(t - 120^2)} + 14040 = \sqrt{t(t - 75^2)}
\]
求解得 \(t = 15625\),故 \(s = \sqrt{15625} = 125\)。代入面积公式:
\[
S = \frac{s}{2} (d_1 + d_2 + d_3) = \frac{125}{2} (192 + 195 + 237) = \frac{125}{2} \times 624 = \frac{125 \times 624}{2}
\]
计算:
\[
624 \div 2 = 312, \quad 125 \times 312 = 125 \times 300 + 125 \times 12 = 37500 + 1500 = 39000
\]
验证向量约束和面积一致性,确认结果。
六边形面积为 39000。