已知椭圆\(\dfrac {x^2}{a^2}+\dfrac {y^2}{b^2}=1\),直线\(l\)过左焦点\(F\)与椭圆交于点\(A\)、\(B\),椭圆的左准线上存在点\(R\),使得\(\triangle ABR\)为正三角形,求椭圆的离心率\(e\)的范围.
设\(AB\)的中点为\(M\),连接\(RM\).
利用椭圆的极坐标方程\[\rho =\dfrac {ep}{1-e\cos \theta},\]我们有\[\begin{split}\rho_A&=\dfrac {b^2}{a-c\cos \theta},\\\rho_B&=\dfrac {b^2}{a-c\cos (\theta+\pi)}=\dfrac {b^2}{a+c\cos\theta}.\end{split}\]
于是\[x_M=\dfrac 12(\rho_A\cdot \cos \theta +\rho_B\cdot \cos (\theta+\pi))=\dfrac {b^2c\cos^2\theta}{a^2-c^2\cos^2\theta}.\]根据题意\[(\rho_A+\rho_B)\cdot \dfrac {\sqrt 3}2\cdot \cos\left(\theta+\dfrac {\pi}2\right)=x_R-x_M.\]因此\[-\dfrac {\sqrt 3ab^2\sin\theta}{a^2-c^2\cos^2\theta}=-\dfrac {b^2}c-\dfrac {b^2c\cos^2\theta}{a^2-c^2\cos^2\theta},\]化简得\[e=\dfrac 1{\sqrt 3\sin\theta}.\]因此离心率\(e\)的取值范围为\(\left(\dfrac {\sqrt 3}3,1\right)\).
图中绿线表示\(R\)点的轨迹,当该轨迹与准线相切时即为临界情况.