已知 $\triangle ABC$ 的内角 $A,B,C$ 满足\[\sin A\cot B+\sin B\cot A=2\sin \dfrac C2,\]求证:$A=B$.
解析 根据题意,有\[\sin^2A\cos B+\sin^2B\cos A=2\sin A\sin B\cos\dfrac{A+B}2,\]记\[x=\dfrac{A+B}2,y=\dfrac{A-B}2,\]则\[\sin^2(x+y)\cos(x-y)+\sin^2(x-y)\cos(x+y)=2\sin(x+y)\sin(x-y)\cos x,\]即\[2\cos x\cos y(\sin^2x+\sin^2y)=2\cos x(\sin^2x-\sin^2y),\]从而\[(1-\cos y)\left[\sin^2x-(1+\cos y)^2\right]=0,\]显然有\[(1+\cos y)^2>1>\sin^2x,\]于是\[\cos y=1,\]从而 $y=0$,也即 $A=B$.