已知$n\in\mathbb N^*$,$x=\left(1+\dfrac 1n\right)^n$,$y=\left(1+\dfrac 1n\right)^{n+1}$,则( )
A.$x^y>y^x$
B.$x^y=y^x$
C.$x^y<y^x$
D.$x^y$和$y^x$的大小关系跟$n$的取值有关
正确答案是B.
分析与解 根据题意,有\[y\ln x=\left(1+\dfrac 1n\right)^{n+1}\cdot n\ln \left(1+\dfrac 1n\right)=\left(1+\dfrac{1}n\right)^n\cdot ( n+1)\ln\left(1+\dfrac 1n\right)=x\ln y,\]所以选项B正确.
也可以对要比较的两个数取对数之后算比值,有$$\dfrac {\ln{x^y}}{\ln{y^x}}=\dfrac {y\ln x}{x\ln y}=\dfrac {\left(1+\dfrac 1n\right)^{n+1}\cdot n\ln\left(1+\dfrac 1n\right)}{\left(1+\dfrac 1n\right)^n\cdot(n+1)\ln\left(1+\dfrac 1n\right)}=1.$$