1、已知函数\(f(x)=2mx^2-4(4-m)x+1\),\(g(x)=mx\),若对于任意实数\(x\),\(f(x)\)与\(g(x)\)的值至少有一个为正数,则实数\(m\)的取值范围是_______.
2、已知\(x\in\mathcal R\),定义:\(\lceil x\rceil\)表示不小于\(x\)的最小整数.若\(\lceil 2x+1\rceil=3\),则\(x\)的取值范围是_______;若\(x>0\)且\(\lceil 2x\cdot \lceil x\rceil\rceil=5\),则\(x\)的取值范围是_______.
3、\(\lim\limits_{x\to 4}{\dfrac{\sqrt{2x+1}-3}{\sqrt x-2}}=\)_______.
4、设\(\left\{a_n\right\}\)满足:\(a_{n+1}=\dfrac{1}{4}\left(a_n^4+3\right)\),\(a_1>1\).求证:\[\sum_{n=1}^{\infty}\dfrac{a_n^2+2a_n+3}{\left(a_n+1\right)\left(a_n^2+1\right)}=\dfrac{1}{a_1-1}.\]
5、求证:\(\sum\limits_{n=1}^{\infty}{\dfrac{1}{2^n-\dfrac 1{2^n}}}<\dfrac 43\).
6、在三角形\(ABC\)中,角\(A\)、\(B\)、\(C\)的对边分别为\(a\)、\(b\)、\(c\),且满足\(\left(2a-c\right)\cos B=b\cos C\).
(1)求\(B\)的大小;
(2)求\(\cos^2A+\sin^2C\)的最大值.
7、设二次函数\(y=f(x)\)的图象过点\((0,0)\),且满足对任意实数\(x\)均有\[-3x^2-1\leqslant f(x)\leqslant 6x+2.\]数列\(\left\{a_n\right\}\)满足:\(a_1=\dfrac 13\),\(a_{n+1}=f\left(a_n\right)\).
(1)确定\(f(x)\)的解析式;
(2)求证:\(a_{n+1}>a_n\);
(3)求证:\(\dfrac{1}{\dfrac 12-a_1}+\dfrac{1}{\dfrac 12-a_2}+\cdots+\dfrac{1}{\dfrac 12-a_n}\geqslant 3^{n+1}-3\).
参考答案
1、\((0,8)\).
2、\(\left(\dfrac 12,1\right]\);\(\left(1,\dfrac 54\right]\).
3、\(\dfrac 43\).
提示:令\(t=\sqrt x-2\),换元后分子有理化即得.
4、提示:\(\dfrac{a_n^2+2a_n+3}{\left(a_n+1\right)\left(a_n^2+1\right)}=\dfrac{1}{a_n-1}-\dfrac{4}{a_n^4-1}=\dfrac{1}{a_n-1}-\dfrac{1}{a_{n+1}-1}\).
5、提示:\[\dfrac{1}{2^n-\dfrac 1{2^n}}=\dfrac{2^n}{4^n-1}<\dfrac{2^n+1}{4^n}=\dfrac 1{2^n}+\dfrac 1{4^n},\]或\[\dfrac{1}{2^n-\dfrac 1{2^n}}<\dfrac 1{2^{n-1}},\]然后后移放缩起点至\(n=4\).
6、(1)\(B=\dfrac {\pi}{3}\);(2)\(1+\dfrac{\sqrt 3}{2}\).
提示:(2)题中代数式变形为\[\begin{split}\dfrac{1+\cos{2A}}2+\dfrac{1-\cos\left(\dfrac{4\pi}3-2A\right)}{2}&=1+\dfrac{\sqrt 3}4\sin{2A}+\dfrac 34\cos{2A}\\&=1+\dfrac{\sqrt 3}2\sin\left(2A+\dfrac{\pi}{3}\right).\end{split}\]
7、(1)\(f(x)=-2x^2+2x\);(2)略;(3)略.
提示:(1)注意到直线\(y=6x+2\)与抛物线\(y=-3x^2-1\)相切于\((-1,-4)\),因此\(y=f(x)\)的图象与此二者的图象亦相切于该点,如图.
(2)只需要证明\(0<a_n<\dfrac 12\),如图.
(3)递推式可以变形为\[\dfrac 12-a_{n+1}=2\left(\dfrac 12-a_n\right)^2,\]而欲证结论可以由\[\dfrac 12-a_n\leqslant \dfrac{1}{2\cdot 3^n}\]推得.