已知椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$($a>b>0$)的离心率$e=\dfrac 12$,过焦点且垂直于$x$轴的直线被椭圆截得的线段长为$3$.
(1) 求椭圆的方程;
(2) 斜率为$\dfrac 12$的动直线$l$与椭圆交于$A,B$两点,在平面上是否存在定点$P$,使得当直线$PA$与直线$PB$的斜率均存在时,斜率之和是与$l$无关的常数?若存在,求出所有满足条件的定点$P$的坐标;若不存在,请说明理由.
分析与解 (1) 根据题意,通径长$\dfrac{2b^2}{a}=3$,于是椭圆的方程为$\dfrac{x^2}4+\dfrac{y^2}3=1$.
(2) 法一 仿射变换
利用仿射变换.设定点$P$的坐标为$(m,n)$,平移坐标系,使$P$点为坐标原点,则椭圆方程变为$$\dfrac{\left(x'+m\right)^2}{4}+\dfrac{\left(y'+n\right)^2}{3}=1.$$当$l$不过点$P'$时,设动直线的方程为$t\left(x'-2y'\right)=1$,则联立直线与椭圆方程,有$$\dfrac 14x'^2+\dfrac 13y'^2+\left(\dfrac m2x'+\dfrac {2n}{3}y'\right)\cdot t\left(x'-2y'\right)+\left(\dfrac 14m^2+\dfrac 13n^2-1\right)\cdot t^2\left(x'-2y'\right)^2=0,$$整理得$y'^2$的系数为$$\dfrac 13-\dfrac {4n}3t+\left(\dfrac 14m^2+\dfrac 13n^2-1\right)\cdot 4t^2,$$而$x'y'$的系数为$$\left(\dfrac {2n}3-m\right)t-\left(\dfrac 14m^2+\dfrac 13n^2-1\right)\cdot 4t^2,$$根据题意,直线$P'A'$与直线$P'B'$的斜率之和$$-\dfrac{\left(\dfrac {2n}3-m\right)t-\left(\dfrac 14m^2+\dfrac 13n^2-1\right)\cdot 4t^2}{\dfrac 13-\dfrac {4n}3t+\left(\dfrac 14m^2+\dfrac 13n^2-1\right)\cdot 4t^2}$$为定值.于是$$\dfrac{2n}3-m=\dfrac 14m^2+\dfrac 13n^2-1=0,$$解得$m=1$,$n=\dfrac 32$或$m=-1$,$n=-\dfrac 32$.对应的$P$点在椭圆上,于是不需要考虑$l$过点$P$的情形.
综上所述,所有满足条件的定点$P$的坐标为$\left(1,\dfrac 32\right)$或$\left(-1,-\dfrac 32\right)$.
注 可以将椭圆仿射为圆,则直线$A'B'$的斜率为$\dfrac{\sqrt 3}3$,于是点$Q'\left(-1,\sqrt 3\right)$始终平分弧$A'B'$,进而可取$P'\left(1,\sqrt 3\right)$,此时$\angle A'P'Q'=\angle B'P'Q'$,因此直线$P'A'$与直线$P'B'$的斜率始终互为相反数,符合题意.
法二 直接计算
设$l:y=\dfrac 12x+t$,与椭圆方程联立得$$x^2+tx+t^2-3=0.$$设$A\left(x_1,\dfrac 12x_1+t\right),B\left(x_2,\dfrac 12x_2+t\right)$,则有$$x_1+x_2=-t,x_1x_2=t^2-3.$$直线$PA,PB$的斜率之和\[\begin{split} &k_{PA}+k_{PB}\\=&\dfrac {\left(m-\dfrac 12x_1-t\right)(m-x_2)+\left(n-\dfrac 12x_2-t\right )(m-x_1)}{(m-x_1)(m-x_2)}\\=&\dfrac {\left(n-\dfrac 32m\right )t+2mn-3}{t^2+mt+m^2-3}.\end{split}\]当$n=\dfrac 32m,2mn=3$时斜率的和恒为$0$,解得\[\begin{cases} m=1,\\n=\dfrac 32.\end{cases} \lor \begin{cases} m=-1,\\n=-\dfrac 32.\end{cases} \]综上所述,所有满足条件的定点$P$的坐标为$\left(1,\dfrac 32\right)$或$\left(-1,-\dfrac 32\right)$.