在$\triangle ABC$中,$2\cot A+3\cot B+4\cot C$的最小值为______.
分析与解 显然原式取得最小值时,有$\cot C\leqslant \cot B\leqslant \cot A$.在$\triangle ABC$中,有$$\cot C=-\cot (A+B)=\dfrac{1-\cot A\cot B}{\cot A+\cot B},$$记$\cot A=x$,$\cot B=y$,于是问题转化为$x,y>0$,求$$m=2x+3y+\dfrac{4(1-xy)}{x+y}$$的最小值.由于\[\begin{split} m&=\dfrac{2x^2+3y^2+xy+4}{x+y}\\
&=2x-y+\dfrac{4y^2+4}{x+y}\\
&=2(x+y)+\dfrac{4y^2+4}{x+y}-3y\\
&\geqslant 2\sqrt{8\left(y^2+1\right)}-3y\\
&=\dfrac{4\sqrt 2-3\cos B}{\sin B}
,\end{split} \]等号当$2(x+y)=\dfrac{4y^2+4}{x+y}$时取得.于是$$m\sin B+3\cos B=4\sqrt 2,$$从而$m^2+9\geqslant \left(4\sqrt 2\right)^2$,等号当$\cot B=\dfrac{3}{\sqrt{23}}$时取得.进而可得$$\cot A=\dfrac{5}{\sqrt{23}},\cot B=\dfrac{3}{\sqrt{23}},\cot C=\dfrac{1}{\sqrt{23}}$$时等号可以同时取得,因此$m$的最小值为$\sqrt {23}$.
思考与总结 事实上,有如下推广:$$x\cot A+y\cot B+z\cot C\geqslant \sqrt{2(xy+yz+zx)-\left(x^2+y^2+z^2\right)},$$当且仅当$$\cot A:\cot B:\cot C=(y+z-x):(z+x-y):(x+y-z)$$时取得.