已知$O$为$\triangle ABC$的外心,$AB=6$,$AC=10$,$\overrightarrow {AO}=x\overrightarrow {AB}+y\overrightarrow {AC}$,且$2x+10y=5$,则$\cos\angle BAC$的值是_____.
分析与解 根据题意有$$\begin{cases} \overrightarrow {AO}\cdot \overrightarrow {AB}=36x+60y\cos\angle BAC=18,\\ \overrightarrow {AO}\cdot\overrightarrow {AC}=60x\cos\angle BAC+100y=50,\end{cases} $$将$10y=5-2x$代入第二个等式得$$2x(3\cos\angle BAC-1)=0,$$于是$x=0$或$\cos\angle BAC=\dfrac 13$.
当$x=0$时,$y=\dfrac 12$,代入第一个等式得$\cos\angle BAC=\dfrac 35$.
综上知$\cos\angle BAC=\dfrac 13$或$\cos\angle BAC=\dfrac 35$.