2014年华中科技大学理科实验班选拔试题—数学

一、填空题(本题共5小题,每小题8分,共40分)

1、设\(f(x)=\dfrac{x}{\sqrt{1+x^2}}\),则\(n\)重复合函数\(f_n(x)=f(f(\cdots f(x)\cdots))=\)_______.

2、设多项式\(p(x)\)满足\(p\left(x^2+1\right)=\left(p(x)\right)^2+1\)和\(p(0)=0\),则\(p(x)=\)_______.

3、设\(S_n=\sum\limits_{k=1}^n\dfrac{6^k}{\left(3^{k+1}-2^{k+1}\right)\left(3^k-2^k\right)}\),则极限\(\lim\limits_{n\to\infty}S_n=\)_______.

4、对\(x>0\),函数\(f(x)=\dfrac{\left(x+\dfrac1x\right)^6-\left(x^6+\dfrac1{x^6}\right)-2}{\left(x+\dfrac1x\right)^3+\left(x^3+\dfrac1{x^3}\right)}\)的最小值为_______.

5、假设\(20\)名学生中的每一名学生可从提供的六门课程中选学一门至六门,也可以一门都不选.试判断下列命题是否正确:存在\(5\)名学生和两门课程,使得这\(5\)名学生都选了这两门课,或者都没选,选填“正确”或“否”_______.

二、(本题共14分)

1、若\(a\)为正整数而\(\sqrt a\)不为整数,证明:\(\sqrt a\)为无理数.

2、试证:除\(0,0,0\)外,没有其他整数\(m,n,p\)使得\[m+n\sqrt2+p\sqrt3=0.\] 三、(本题共16分) 设\(a,b,c\)为三角形三边之长,\(p=\dfrac{a+b+c}2\),\(r\)为内切圆半径,证明:\[\dfrac1{(p-a)^2}+\dfrac1{(p-b)^2}+\dfrac1{(p-c)^2}\geqslant\dfrac1{r^2}.\]

四、(本题共12分) 证明:设\(m\)是任一正整数,则\(a_m=\dfrac12+\dfrac13+\dfrac14+\dfrac15+\cdots+\dfrac1{2^m}\)不是整数.

五、(本题共18分) 下图是2013年恒大足球俱乐部策划的主场与首尔FC足球队的亚冠决赛海报,左边是恒大队,右边是首尔队,该海报的寓意是什么?要求简单推导海报中两个数学式子的结果.一个数学式子是\(\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+\cdots}}}}\)(拉马努金式子),另一个是\(\mathrm e^{\pi \mathrm i}+1\)(已知欧拉公式\(\mathrm e^{\pi \mathrm i}=\cos\alpha+\mathrm i\sin\alpha\)). 图片20


参考答案

一、填空题

1、\(\dfrac{x}{\sqrt{1+nx^2}}\).

2、\(x\)    提示    方程\(p(x)-x=0\)有无数个零点,于是\(p(x)=x\).

3、\(2\)    提示    裂项为\(\dfrac{2^k}{3^k-2^k}-\dfrac{2^{k+1}}{3^{k+1}-2^{k+1}}\).

4、\(6\)    提示    函数\(f(x)=3\left(x+\dfrac 1x\right)\).

5、否    提示    \(6\)门课中选\(3\)门共有\({\rm C}_6^3=20\)种不同的组合,让每个同学分别选一种组合,那么任何两门课同时选和同时不选的同学数均为\(4\).

二、略    

提示   均用反证法.

三、略    

提示    \(pr=S\),而\(S=\sqrt{p(p-a)(p-b)(p-c)}\).

四、略

提示    设右边的公分母为\[\left[2,3,4,\cdots,2^m\right]=2^m\cdot p,\]其中\(p\)是一个奇数,两边同时乘以公分母,则左边是偶数,而右边为奇数.

注一    利用这个方法可以证明\(\sum\limits_{i=1}^n{\dfrac 1i}\),其中\(n\in\mathcal N^*\)且\(n\geqslant 2\)均不是整数.另外,这个方法中从\(2\)的方幂出发也不是必须的.

注二    也可以两边同时乘以\(\dfrac{[2,3,\cdots,2^m]}p\),其中\(p\)为右边各分母分解质因数后的最大奇素数因子,根据伯特兰-切比雪夫定理,含\(p\)的项唯一,进而即得.

五、\(3:0\)

提示    拉马努金恒等式,注意到\[n=\sqrt{1+(n-1)(n+1)},\]于是\[\begin{split}3&=\sqrt{1+2\cdot 4}\\&=\sqrt{1+2\sqrt{1+3\cdot 5}}\\&=\sqrt{1+2\sqrt{1+3\sqrt{1+4\cdot 6}}}\\&=\cdots\end{split}.\]

点击此处下载pdf.

此条目发表在自招竞赛分类目录。将固定链接加入收藏夹。

发表回复