已知函数\(f(x)=3x^2+1\),\(g(x)=2x\),数列\(\left\{a_n\right\}\)满足对于一切\(n\in\mathcal N^*\)有\(a_n>0\),且\(f\left(a_n+1\right)-f\left(a_n\right)=g\left(a_{n+1}+\dfrac 32\right)\).数列\(\left\{b_n\right\}\)满足\(b_n={\log_{a_n}}a\),设\(k,l\in\mathcal N^*\),\(b_k=\dfrac 1{1+3l}\),\(b_l=\dfrac 1{1+3k}\).
(1)求证:数列\(\left\{a_n\right\}\)为等比数列,并指出公比;
(2)若\(k+l=9\),求数列\(\left\{b_n\right\}\)的通项公式;
(3)若\(k+l=M_0\)(\(M_0\)为常数),求数列\(\left\{a_n\right\}\)从第几项起,后面的项都满足\(a_n>1\).
(1)根据题意,有\[3\left(a_n+1\right)^2+1-\left(3a_n^2+1\right)=2a_{n+1}+3,\]整理得\[a_{n+1}=3a_n,\]于是数列\(\left\{a_n\right\}\)为等比数列,且公比为\(3\).
(2)由于\(b_n={\log_{a_n}}a\),于是\[\dfrac{1}{b_n}={\log_a}a_n\]为公差为\({\log_a}3\)的等差数列,记\(d={\log_a}3\),并设\(b_n=b+nd\),则根据题意有\[\begin{cases}b+kd=1+3l,\\b+ld=1+3k,\end{cases}\]两式相减得\[d(k-l)=3l-3k,\]于是\[d=-3,\]两式相加得\[2b+d(k+l)=2+3(k+l),\]于是\[b=3(k+l)+1=28,\]因此\(b_n=\dfrac{1}{28-3n}\).
(3)与(2)类似,可以求得\[d=-3,b=3M_0+1,\]于是可知\(0<a<1\),因此\(a_n>1\)即\[\dfrac{1}{b_n}={\log_a}a_n<0,\]因此可得当\(-3n+3M_0+1<0\)时,也就是从第\(M_0+1\)项起,后面的项都满足\(a_n>1\).