已知S(n,k)=n∑i=1ik,其中k,n∈N∗.
(1)求S(n,1),S(n,2),S(n,3);
(2)给出S(n,k)关于k的一个递推公式.
分析与解 (1) 根据等差数列的求和公式,有S(n,1)=12n(n+1)=12n2+12n.由和立方公式,有(i+1)3=i3+3i2+3i+1,于是n∑i=1(i+1)3=n∑i=1i3+3S(n,2)+3S(n,1)+n,即(n+1)3−n−1=3S(n,2)+3S(n,1),整理可得S(n,2)=13n3+12n2+16n.类似的,由(i+1)4=i4+4i3+6i2+4i+1,可得S(n,3)=14n4+12n3+14n2.
(2) 由二项式定理,有(i+1)k+1=ik+1+Ckk+1ik+Ck−1k+1ik−1+⋯+C1k+1i+1,于是n∑i=1(i+1)k+1=n∑i=1ik+1+Ckk+1S(n,k)+Ck−1k+1S(n,k−1)+⋯+C1k+1S(n,1)+n,整理可得S(n,k)=(n+1)k+1−n−1−Ck−1k+1S(n,k−1)−Ck−2k+1S(n,k−2)−⋯−C1k+1S(n,1)k+1.
事实上,有S(n,k)=1k+1k+1∑i=1Cik+1Bk+1−ini,其中zez−1=+∞∑n=0Bnznn!.中间用到的Bn被称为伯努利数(Bernoulli number).
观察下列等式:
n∑i=1i=12n2+12n,n∑i=1i2=13n3+12n2+16n,n∑i=1i3=14n4+12n3+14n2,n∑i=1i4=15n5+12n4+13n3−130n,n∑i=1i5=16n6+12n5+512n4−112n2,n∑i=1i6=17n7+12n6+12n5−16n3+142n,⋮n∑i=1ik=ak+1nk+1+aknk+ak−1nk−1+ak−2nk−2+⋯+a1n+a0,可以推测,当k⩾时,a_{k+1}=\dfrac{1}{k+1},a_k=\dfrac{1}{2},
a_{k-1}=______,a_{k-2}=______.
这道填空题考查合情推理.观察出答案很容易:a_{k-1}=\dfrac{k}{12},a_{k-2}=0.下面用数学归纳法给出证明.
为表述方便,设
S_k(n)=\displaystyle\sum_{i=1}^{n}i^k=a_{k+1}^{(k)}n^{k+1}+a_k^{(k)}n^k+a_{k-1}^{(k)}n^{k-1}+a_{k-2}^{(k)}n^{k-2}+\cdots+a_1^{(k)}n+a_0^{(k)},
我们现在要证明对任意k \geqslant 2\ \left(k\in\mathbb{N}^{*}\right),都有\begin{cases}
a_{k+1}^{(k)}=\dfrac{1}{k+1},\\
a_k^{(k)}=\dfrac{1}{2},\\
a_{k-1}^{(k)}=\dfrac{k}{12},\\
a_{k-2}^{(k)}=0.
\end{cases}
由题意,当k=2,3,4时,欲证等式均成立.
假设欲证等式对k=m-1,m,m+1均成立,则有
\begin{align*}
S_{m+1}(n)&=\dfrac{1}{m+2}n^{m+2}+\dfrac{1}{2}n^{m+1}+\dfrac{m+1}{12}n^{m}+\cdots+a_0^{(m+1)},\\
S_{m}(n)&=\dfrac{1}{m+1}n^{m+1}+\dfrac{1}{2}n^{m}+\cdots+a_0^{(m)},\\
S_{m-1}(n)&=\dfrac{1}{m}n^m+\cdots+a_0^{(m-1)},
\end{align*}
因此k=m+2时,由递推公式可知
\begin{align*}
a_{m+3}^{(m+2)}&=\dfrac{1}{m+3},\\
a_{m+2}^{(m+2)}&=\dfrac{1}{m+3}\left(\mathrm{C}_{m+3}^{1}-\dfrac{\mathrm{C}_{m+3}^{2}}{m+2}\right)=\dfrac{1}{2},\\
a_{m+1}^{(m+2)}&=\dfrac{1}{m+3}\left(\mathrm{C}_{m+3}^{2}-\dfrac{\mathrm{C}_{m+3}^{2}}{2}-\dfrac{\mathrm{C}_{m+3}^{3}}{m+1}\right)=\dfrac{m+2}{12},\\
a_{m+1}^{(m+2)}&=\dfrac{1}{m+3}\left(\mathrm{C}_{m+3}^{3}-\dfrac{(m+1)\mathrm{C}_{m+3}^{2}}{12}-\dfrac{\mathrm{C}_{m+3}^{3}}{2}-\dfrac{\mathrm{C}_{m+3}^{4}}{m}\right)=0,
\end{align*}
故k=m+2时,欲证等式也成立.
综上所述,欲证等式对任意k \geqslant 2\ \left(k\in\mathbb{N}^{*}\right)都成立.