k次方求和递推

已知S(n,k)=ni=1ik,其中k,nN

(1)求S(n,1)S(n,2)S(n,3)

(2)给出S(n,k)关于k的一个递推公式.


分析与解 (1) 根据等差数列的求和公式,有S(n,1)=12n(n+1)=12n2+12n.由和立方公式,有(i+1)3=i3+3i2+3i+1,于是ni=1(i+1)3=ni=1i3+3S(n,2)+3S(n,1)+n,(n+1)3n1=3S(n,2)+3S(n,1),整理可得S(n,2)=13n3+12n2+16n.类似的,由(i+1)4=i4+4i3+6i2+4i+1,可得S(n,3)=14n4+12n3+14n2.

(2) 由二项式定理,有(i+1)k+1=ik+1+Ckk+1ik+Ck1k+1ik1++C1k+1i+1,于是ni=1(i+1)k+1=ni=1ik+1+Ckk+1S(n,k)+Ck1k+1S(n,k1)++C1k+1S(n,1)+n,整理可得S(n,k)=(n+1)k+1n1Ck1k+1S(n,k1)Ck2k+1S(n,k2)C1k+1S(n,1)k+1.

事实上,有S(n,k)=1k+1k+1i=1Cik+1Bk+1ini,其中zez1=+n=0Bnznn!.中间用到的Bn被称为伯努利数(Bernoulli number).

观察下列等式:
ni=1i=12n2+12n,ni=1i2=13n3+12n2+16n,ni=1i3=14n4+12n3+14n2,ni=1i4=15n5+12n4+13n3130n,ni=1i5=16n6+12n5+512n4112n2,ni=1i6=17n7+12n6+12n516n3+142n,ni=1ik=ak+1nk+1+aknk+ak1nk1+ak2nk2++a1n+a0,可以推测,当k时,a_{k+1}=\dfrac{1}{k+1}a_k=\dfrac{1}{2}
a_{k-1}=______,a_{k-2}=______.

这道填空题考查合情推理.观察出答案很容易:a_{k-1}=\dfrac{k}{12}a_{k-2}=0.下面用数学归纳法给出证明.

为表述方便,设
S_k(n)=\displaystyle\sum_{i=1}^{n}i^k=a_{k+1}^{(k)}n^{k+1}+a_k^{(k)}n^k+a_{k-1}^{(k)}n^{k-1}+a_{k-2}^{(k)}n^{k-2}+\cdots+a_1^{(k)}n+a_0^{(k)},
我们现在要证明对任意k \geqslant 2\ \left(k\in\mathbb{N}^{*}\right),都有\begin{cases} a_{k+1}^{(k)}=\dfrac{1}{k+1},\\ a_k^{(k)}=\dfrac{1}{2},\\ a_{k-1}^{(k)}=\dfrac{k}{12},\\ a_{k-2}^{(k)}=0. \end{cases}

由题意,当k=2,3,4时,欲证等式均成立.

假设欲证等式对k=m-1,m,m+1均成立,则有
\begin{align*} S_{m+1}(n)&=\dfrac{1}{m+2}n^{m+2}+\dfrac{1}{2}n^{m+1}+\dfrac{m+1}{12}n^{m}+\cdots+a_0^{(m+1)},\\ S_{m}(n)&=\dfrac{1}{m+1}n^{m+1}+\dfrac{1}{2}n^{m}+\cdots+a_0^{(m)},\\ S_{m-1}(n)&=\dfrac{1}{m}n^m+\cdots+a_0^{(m-1)}, \end{align*}
因此k=m+2时,由递推公式可知
\begin{align*} a_{m+3}^{(m+2)}&=\dfrac{1}{m+3},\\ a_{m+2}^{(m+2)}&=\dfrac{1}{m+3}\left(\mathrm{C}_{m+3}^{1}-\dfrac{\mathrm{C}_{m+3}^{2}}{m+2}\right)=\dfrac{1}{2},\\ a_{m+1}^{(m+2)}&=\dfrac{1}{m+3}\left(\mathrm{C}_{m+3}^{2}-\dfrac{\mathrm{C}_{m+3}^{2}}{2}-\dfrac{\mathrm{C}_{m+3}^{3}}{m+1}\right)=\dfrac{m+2}{12},\\ a_{m+1}^{(m+2)}&=\dfrac{1}{m+3}\left(\mathrm{C}_{m+3}^{3}-\dfrac{(m+1)\mathrm{C}_{m+3}^{2}}{12}-\dfrac{\mathrm{C}_{m+3}^{3}}{2}-\dfrac{\mathrm{C}_{m+3}^{4}}{m}\right)=0, \end{align*}
k=m+2时,欲证等式也成立.

综上所述,欲证等式对任意k \geqslant 2\ \left(k\in\mathbb{N}^{*}\right)都成立.

此条目发表在解题展示分类目录。将固定链接加入收藏夹。

发表回复