已知P是定直线y=n(n<0)上的一点,过P作抛物线C:x2=2py(p>0)的两条切线,设切点分别为A(x1,y1),B(x2,y2).
(1) 求证:x1x2+y1y2是定值;
(2) 设△PAB的外接圆圆心为M,抛物线C的焦点为F,求证:FM⊥FP.
答案 (1) 定值为2pn+n2;(2)略.
分析与解 (1) 设P(m,n),则AB:mx=p(y+n),联立直线AB与抛物线方程,可得x2−2mx+2pn=0,于是x1+x2=2m,x1x2=2pn.因此x1x2+y1y2=x1x2+(x1x2)24p2=2pn+n2,为定值.
(2) 设P(m,n)点关于F点的对称点为Q(−m,p−n),则问题等价于证明P,A,B,Q四点共圆.
设圆M的方程为x2+y2+Dx+Ey+F=0,则(D,E,F)满足方程组{x21+y21+Dx1+Ey1+F=0,x22+y22+Dx2+Ey2+F=0,m2+n2+Dm+En+F=0,前两个方程相加可得x21+x22+y21+y22+(x1+x2)D+(y1+y2)E+2F=0,而x21+x22=(x1+x2)2−2x1x2=4m2−4pn,y1+y2=x21+x222p=2m2p−2n,y21+y22=(x21+x22)2−2x21x224p2=4m4p2−4m2np+2n2,代入可得4m2−4pn+4m4p2−8m2np+2n2+2mD+(2m2p−2n)E+2F=0,该方程与第三个方程的两倍相减,可得(m2p−2n)(E+2m2p+p)=0,于是解得E=−2m2p−p.前两个方程相减可得x21−x22+y21−y22+(x1−x2)D+(y1−y2)E=0,即x1+x2+(x1+x2)(x21+x22)4p2+D+x1+x22pE=0,也即2m+2m(4m2−4pn)4p2+D+2m2pE=0,将E=−2m2p−p代入可得D=2mnp−m.欲证m2+(p−n)2+D(−m)+E(p−n)+F=0,只需要证明2np−p2+2mD+(2n−p)E=0,将D=2mnp−m,E=−2m2p−p代入检验即得原命题得证.
注 任何三点都不共线的四点A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)共圆的充分必要条件是|x21+y21x1y11x22+y22x2y21x23+y23x3y31x24+y24x4y41|=0.
???
请教老师:直线AB的方程mx=p(y+n)如何得到的?有简法么?