求1+11+tanπ2n+1+11+tan2π2n+1+⋯+11+tan2nπ2n+1的值.
分析与解 记θk=k2n+1⋅2π,其中k=0,1,2,⋯,2n,则由(cosθk+isinθk)2n+1=1可得C02n+1cos2n+1θk−C22n+1cos2n−1θksin2θk+⋯+(−1)nC2n2n+1cosθksin2nθk=1,令xk=1cosθk,移项后两边同除以cos2n+1θk整理得到x2n+1k+(−1)n+1C2n2n+1(x2k−1)n+⋯+C22n+1(x2k−1)−C02n+1=0,这个2n+1次方程的2n+1个根恰为xk,k=0,1,⋯,2n,于是2n∑k=0xk=(−1)nC2n2n+1=(−1)n⋅(2n+1),又cos(k2n+1⋅2π)=cos(2n+1−k2n+1⋅2π),于是n∑k=1xk=12(2n∑k=1xk)=(−1)n(2n+1)−12={n,2∣n,−(n+1),2∤而原式等于\begin{split} 1+\sum_{k=1}^{2n}\dfrac{1}{1+\tan\dfrac{k\pi}{2n+1}}&=1+\sum_{k=1}^{2n}\dfrac{\cos\dfrac {k\pi}{2n+1}\left(\cos\dfrac {k\pi}{2n+1}-\sin\dfrac{k\pi}{2n+1}\right)}{\cos\left(\dfrac{k}{2n+1}\cdot 2\pi\right)}\\ &=1+\dfrac 12\sum_{k=1}^n{\left(1-\tan\dfrac{2k\pi}{2n+1}+\dfrac 1{\cos{\dfrac {2k\pi}{2n+1}}}\right)}\\ &=(n+1)+\sum_{k=1}^{n}x_k\\ &=\begin{cases} 2n+1,& 2 \mid n,\\ 0,&2\nmid n.\end{cases} \end{split}