放缩有度

给定正实数x1,y1,z1,定义数列{xn},{yn},{zn}如下:xn+1=yn+1zn,yn+1=zn+1xn,zn+1=xn+1yn,求证:x200,y200,z200中至少有一个数大于20


分析与证明 将三式相加,有xn+1+yn+1+zn+1=(xn+yn+zn)+(1xn+1yn+1zn),于是(xn+1+yn+1+zn+1)2(xn+yn+zn)2=2(xn+yn+zn)(1xn+1yn+1zn)+(1xn+1yn+1zn)2.由柯西不等式可得(xn+yn+zn)(1xn+1yn+1zn)于是就有\left(x_{n+1}+y_{n+1}+z_{n+1}\right)^2-\left(x_n+y_n+z_n\right)^2>18,分别取n1,2,\cdots ,199,累加可得\left(x_{200}+y_{200}+z_{200}\right)^2-\left(x_1+y_1+z_1\right)^2>18(200-1),因此x_{200}+y_{200}+z_{200}>\sqrt{18\cdot 199},\sqrt{18\cdot 199}<60,放过头了.

略加调整,由于x_2+y_2+z_2=x_1+\dfrac {1}{x_1}+y_2+\dfrac{1}{y_1}+z_1+\dfrac{1}{z_1}\geqslant 6,于是\left(x_{200}+y_{200}+z_{200}\right)^2-\left(x_2+y_2+z_2\right)^2>18\cdot 198,从而可得x_{200}+y_{200}+z_{200}>\sqrt{18\cdot 198+36}=60,于是命题得证.

此条目发表在解题展示分类目录,贴了标签。将固定链接加入收藏夹。

发表回复