给定正实数x1,y1,z1,定义数列{xn},{yn},{zn}如下:xn+1=yn+1zn,yn+1=zn+1xn,zn+1=xn+1yn,求证:x200,y200,z200中至少有一个数大于20.
分析与证明 将三式相加,有xn+1+yn+1+zn+1=(xn+yn+zn)+(1xn+1yn+1zn),于是(xn+1+yn+1+zn+1)2−(xn+yn+zn)2=2(xn+yn+zn)(1xn+1yn+1zn)+(1xn+1yn+1zn)2.由柯西不等式可得(xn+yn+zn)(1xn+1yn+1zn)⩾9,于是就有(xn+1+yn+1+zn+1)2−(xn+yn+zn)2>18,分别取n为1,2,⋯,199,累加可得(x200+y200+z200)2−(x1+y1+z1)2>18(200−1),因此x200+y200+z200>√18⋅199,而√18⋅199<60,放过头了.
略加调整,由于x2+y2+z2=x1+1x1+y2+1y1+z1+1z1⩾6,于是(x200+y200+z200)2−(x2+y2+z2)2>18⋅198,从而可得x200+y200+z200>√18⋅198+36=60,于是命题得证.