2014年高考安徽卷理科数学第21题(压轴题):
设实数\(c>0\),整数\(p>1\),\(n\in {\bf N}^*\).
(1) 证明:当\(x>-1\),且\(x\neq 0\)时,\((1+x)^p>1+px\).
(2) 数列\(\{a_n\}\)满足\(a_1>c^{\frac 1p}\),\(a_{n+1}=\dfrac {p-1}p a_n+\dfrac cp a_n^{1-p}\).证明:\(a_n>a_{n+1}>c^{\frac 1p}\).
(1) 用数学归纳法证明.
当\(p=2\)时,命题显然成立;
若命题对\(p(p\geqslant 2)\)成立,则命题在\(p+1\)时
\[(1+x)^{p+1}>(1+px)(1+x)=1+(p+1)x+px^2\geqslant 1+(1+p)x.\]
于是原命题得证.
(2) 用数学归纳法证明\(a_n>c^{\frac 1p}\).
当\(n=1\)时,命题显然成立;
若命题对\(n\)成立,则命题在\(n+1\)时
\[\begin{split}a_{n+1}>c^{\frac 1p} &\Leftarrow\dfrac {p-1}p a_n+\dfrac cp a_n^{1-p}>c^{\frac 1p}\\&\Leftarrow \dfrac 1p\left(\underbrace {a_n+a_n+\cdots a_n}_{p-1}+\dfrac c{a_n^{p-1}}\right)>c^{\frac 1p}\\&\Leftarrow A-G-Inequation.\end{split}\]
在\(a_n>c^{\frac 1p}\)的基础上有
\[\begin{split}a_{n+1}-a_n&=\dfrac {p-1}p a_n +\dfrac cp a_n^{1-p}-a_n\\&=-\dfrac 1p a_n+\dfrac cp a_n^{1-p}\\&=\dfrac 1p a_n \left(\dfrac c{a_n^p}-1\right)<0.\end{split}\]
因此原命题得证.
标准答案中做了变形\[\dfrac {a_{n+1}}{a_n}=1+\dfrac 1p\left(\dfrac c{a_n^p}-1\right),\]进而\[\left(\dfrac {a_{n+1}}{a_n}\right)^p>1+p\cdot\dfrac 1p\left(\dfrac c{a_n^p}-1\right) = \dfrac c{a_n^p},\]于是有\[a_{n+1}>c^{\frac 1p}.\]