题拍拍征解问题[27]

设 $a_i>0$,且 $a_1a_2\cdots a_n=1$,求 $k_n$ 的最小值,使得恒有\[\dfrac{a_1a_2}{(a_1^2+a_2)(a_1+a_2^2)}+\dfrac{a_2a_3}{(a_2^2+a_3)(a_2+a_3^2)}+\cdots+\dfrac{a_na_1}{(a_n^2+a_1)(a_n+a_1^2)}\leqslant k_n.\]

此条目发表在问题征解分类目录。将固定链接加入收藏夹。

发表回复