已知实数a,b,x,y满足{ax+by=3,ax2+by2=7,ax3+by3=16,ax4+by4=42,求ax5+by5的值.
解 记An=axn+byn,其中n=1,2,⋯,则An=(x+y)An−1−xyAn−2,n⩾3,
分别取n=3,4可得{7(x+y)−3xy=16,16(x+y)−7xy=42,
解得{x+y=−14,xy=−38,
因此A5=−14A4+38A3=20.
在上述解法中可以注意到x+y与xy,联想韦达定理,可以改写解法如下.
设x,y是方程t2=α⋅t+β
的两根,则axn=α⋅axn−1+β⋅axn−2,byn=α⋅byn−1+β⋅byn−2,
于是就有axn+byn=α(axn−1+byn−1)+β(axn−2+byn−2),
以下略.
下面给出一道题目作为练习:
已知{x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,
求x5+y5+z5的值.
答案 6.
提示 令An=xn+yn+zn,则An=α⋅An−1+β⋅An−2+γ⋅An−3,
其中α=x+y+z=1,β=−(xy+yz+zx)=12,γ=xyz=16.
你有没有QQ,发给你,好吗?
我不知怎么了,一发上去就要审核,审核结束后就会缺少字符。
怎么办?
2825739503,谢谢!
牛顿恒等式推广的证明:
[Pleft( t right) = prodlimits_{i = 1}^n {left( {t - {x_i}} right)} = {t^n} + {c_1}{t^{n - 1}} + ldots + {c_{n - 1}}t + {c_n} = sumlimits_{i = 1}^n {{c_{i - 1}}{t^{n - i + 1}}}\
Pleft( {{x_i}} right) = sumlimits_{i = 1}^n {{c_{i - 1}}{t^{n - i + 1}}} = {x_i}^n + {c_1}{x_i}^{n - 1} + ldots + {c_{n - 1}}{x_i} + {c_n} = 0\
{A_i}{x_i}^kPleft( {{x_i}} right) = {A_i}{x_i}^{n + k} + {c_1}{A_i}{x_i}^{n + k - 1} + ldots + {c_{n - 1}}{A_i}{x_i}^{k + 1} + {c_n}{A_i}{x_i}^k = 0\
sumlimits_{i = 1}^n {{A_i}{x_i}^kPleft( {{x_i}} right)} = {T_{n + k}} + {c_1}{T_{n + k - 1}} + ldots + {c_{n - 1}}{T_{k + 1}} + {c_n}{T_k} = 0]
注意:
c0Sk+c1Sk−1+cdots+cnSk−n=0(nleqslantk)tag∗
其中的colorred1leqslantk可以去掉,将牛顿恒等式中的colorredkinN+推广为colorredkinZ
证明:
对方程f(x)=c0xn+c1xn−1+cdots+cn=0,(c0ne0)
作倒数变换x=frac1y,得:
g(y)=cnyn+cn−1yn−1+cdots+c0=0,(cnne0)
方程g(y)=0的n个根分别为原方程方程f(x)=0的n个根的倒数
记Skprime=yk1+yk2+cdots+ykn
则Skprime=S−k
对新方程运用(∗)式的结论,可知
cnSkprime+cn−1Sk−1prime+cdots+c1Sk−n+1prime+c0Sk−nprime=0
cnS−k+cn−1S1−k+cdots+c1S−1+c0Sn−k=0tag∗∗
已知x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,求x4+y4+z4的值(1991年江苏省初中数学竞赛)
设Sn=xn+yn+zn,这里x、y、z是关于t一元三次方程t3+c1t+c2t+c3=0的两个实根
则根据牛顿恒等式,有
[c_0S_k+c_1S_{k-1}+cdots+c_{k-1}S_1+kc_k=0(n3) ]
则
begin{eqnarray*}
{S_1} + {c_1} = 0\
{S_2} + {c_1}{S_1} + 2{c_2} = 0\
{S_3} + {c_1}{S_2} + {c_2}{S_1} + 3{c_3} = 0\ tag{1}
end{eqnarray*}
[{S_4} + c_1{S_{3}} + c_2{S_{2}} +c_3{S_{1}}=0tag{2}]
即
[left{ begin{array}{l}
1+ {c_1} = 0\
2 + {c_1} + 2{c_2} = 0\
3 + 2{c_1} + {c_2} + 3{c_3} = 0
end{array} right. Rightarrow left{ begin{array}{l}
{c_1} = -1\
{c_2} = -frac12\
{c_3} = -frac16
end{array} right.]
[{S_4}=-(c_1{S_{3}} + c_2{S_{2}} +c_3{S_{1}})=frac{25}{6}]
[{S_5}=-(c_1{S_{4}} + c_2{S_{3}} +c_3{S_{2}})=color{red}{6}]
则根据牛顿恒等式推广left(∗∗right),有
[c_3{S_{-1}} + c_2{S_{0}} + c_1{S_{1}} +{S_{2}}=0]
即
[{S_{-1}} = -frac{c_2{S_{0}} + c_1{S_{1}} +{S_{2}}}{c_3} =-3]
有
[c_3{S_{-2}} + c_2{S_{-1}} + c_1{S_{0}} +{S_{1}}=0]
即
[{S_{-2}} = -frac{c_2{S_{-2}} + c_1{S_{0}} +{S_{1}}}{c_3} =-3]
[frac{1}{x^2} + frac{1}{y^2} +frac{1}{z^2}=-3]
不要惊讶!上式的平方和怎么会等于负数呢?因为原方程有虚根!
之后的以此类推……
http://www.pep.com.cn/rjwk/gzsxsxkj/sxkj2014/sxkj17/sxkj13gk/201408/t20140819_1214626.htm
Newton's identities
http://fermatslasttheorem.blogspot.com/2007/02/newtons-identities.html
Newton-Girard formulas
Newton-Girard power sum formulas
这个别删!
缺少大量的\字符.
牛顿恒等式推广的证明:
[Pleft( t right) = prodlimits_{i = 1}^n {left( {t - {x_i}} right)} = {t^n} + {c_1}{t^{n - 1}} + ldots + {c_{n - 1}}t + {c_n} = sumlimits_{i = 1}^n {{c_{i - 1}}{t^{n - i + 1}}}\
Pleft( {{x_i}} right) = sumlimits_{i = 1}^n {{c_{i - 1}}{t^{n - i + 1}}} = {x_i}^n + {c_1}{x_i}^{n - 1} + ldots + {c_{n - 1}}{x_i} + {c_n} = 0\
{A_i}{x_i}^kPleft( {{x_i}} right) = {A_i}{x_i}^{n + k} + {c_1}{A_i}{x_i}^{n + k - 1} + ldots + {c_{n - 1}}{A_i}{x_i}^{k + 1} + {c_n}{A_i}{x_i}^k = 0\
sumlimits_{i = 1}^n {{A_i}{x_i}^kPleft( {{x_i}} right)} = {T_{n + k}} + {c_1}{T_{n + k - 1}} + ldots + {c_{n - 1}}{T_{k + 1}} + {c_n}{T_k} = 0]
注意:
c0Sk+c1Sk−1+cdots+cnSk−n=0(nleqslantk)tag∗
其中的colorred1leqslantk可以去掉,将牛顿恒等式中的colorredkinN+推广为colorredkinZ
证明:
对方程f(x)=c0xn+c1xn−1+cdots+cn=0,(c0ne0)
作倒数变换x=frac1y,得:
g(y)=cnyn+cn−1yn−1+cdots+c0=0,(cnne0)
方程g(y)=0的n个根分别为原方程方程f(x)=0的n个根的倒数
记Skprime=yk1+yk2+cdots+ykn
则Skprime=S−k
对新方程运用(∗)式的结论,可知
cnSkprime+cn−1Sk−1prime+cdots+c1Sk−n+1prime+c0Sk−nprime=0
cnS−k+cn−1S1−k+cdots+c1S−1+c0Sn−k=0tag∗∗
已知x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,求x4+y4+z4的值(1991年江苏省初中数学竞赛)
设Sn=xn+yn+zn,这里x、y、z是关于t一元三次方程t3+c1t+c2t+c3=0的两个实根
则根据牛顿恒等式,有
[c_0S_k+c_1S_{k-1}+cdots+c_{k-1}S_1+kc_k=0(n3) ]
则
begin{eqnarray*}
{S_1} + {c_1} = 0\
{S_2} + {c_1}{S_1} + 2{c_2} = 0\
{S_3} + {c_1}{S_2} + {c_2}{S_1} + 3{c_3} = 0\ tag{1}
end{eqnarray*}
[{S_4} + c_1{S_{3}} + c_2{S_{2}} +c_3{S_{1}}=0tag{2}]
即
[left{ begin{array}{l}
1+ {c_1} = 0\
2 + {c_1} + 2{c_2} = 0\
3 + 2{c_1} + {c_2} + 3{c_3} = 0
end{array} right. Rightarrow left{ begin{array}{l}
{c_1} = -1\
{c_2} = -frac12\
{c_3} = -frac16
end{array} right.]
[{S_4}=-(c_1{S_{3}} + c_2{S_{2}} +c_3{S_{1}})=frac{25}{6}]
[{S_5}=-(c_1{S_{4}} + c_2{S_{3}} +c_3{S_{2}})=color{red}{6}]
则根据牛顿恒等式推广left(∗∗right),有
[c_3{S_{-1}} + c_2{S_{0}} + c_1{S_{1}} +{S_{2}}=0]
即
[{S_{-1}} = -frac{c_2{S_{0}} + c_1{S_{1}} +{S_{2}}}{c_3} =-3]
有
[c_3{S_{-2}} + c_2{S_{-1}} + c_1{S_{0}} +{S_{1}}=0]
即
[{S_{-2}} = -frac{c_2{S_{-2}} + c_1{S_{0}} +{S_{1}}}{c_3} =-3]
[frac{1}{x^2} + frac{1}{y^2} +frac{1}{z^2}=-3]
不要惊讶!上式的平方和怎么会等于负数呢?因为原方程有虚根!
之后的以此类推……
http://www.pep.com.cn/rjwk/gzsxsxkj/sxkj2014/sxkj17/sxkj13gk/201408/t20140819_1214626.htm
Newton's identities
http://fermatslasttheorem.blogspot.com/2007/02/newtons-identities.html
Newton-Girard formulas
Newton-Girard power sum formulas
你有没有QQ,发给你,好吗?
删哪个?
2015年9月2日下午3:14
谢谢!
已经删除,刷新看看.这一楼在5点前删除.
牛顿恒等式
对多项式f(x)=c0xn+c1xn−1+⋯+cn,(c0≠0)
设方程f(x)=0的n个根为x1,x2,⋯,xn
对于k∈N+,记Sk=xk1+xk2+⋯+xkn则有
1.c0Sk+c1Sk−1+⋯+ck−1S1+kck=0 (1⩽k⩽n)
2.c0Sk+c1Sk−1+⋯+cnSk−n=0 (n<k)
http://fermatslasttheorem.blogspot.jp/2007/02/newtons-identities.html
已知实数a,b,x,y满足
{ax+by=3,ax2+by2=7,ax3+by3=16,ax4+by4=42,
求ax5+by5的值.
(第八届美国数学邀请赛)
设Sn=xn+yn,这里x、y是关于t一元二次方程t2+c1t+c2=0的两个实根
则根据牛顿恒等式,有
S1+c1=0S2+c1S1+2c2=0
以及
S3+c1S2+c2S1=0S4+c1S3+c2S2=0S5+c1S4+c2S3=0⋯
设Tn=axn+byn,这里x、y是关于t一元二次方程t2+c1t+c2=0的两个实根
则根据牛顿恒等式的推广,有
T3+c1T2+c2T1=0T4+c1T3+c2T2=0T5+c1T4+c2T3=0⋯
http://www.pep.com.cn/rjwk/gzsxsxkj/sxkj2014/sxkj17/sxkj13gk/201408/t20140819_1214626.htm