已知实数\(a,b,x,y\)满足\[\begin{cases}ax+by=3,\\ax^2+by^2=7,\\ax^3+by^3=16,\\ax^4+by^4=42,\end{cases}\]求\(ax^5+by^5\)的值.
解 记\(A_n=ax^n+by^n\),其中\(n=1,2,\cdots\),则\[A_n=(x+y)A_{n-1}-xyA_{n-2},n\geqslant 3,\]分别取\(n=3,4\)可得\[\begin{cases}7(x+y)-3xy=16,\\16(x+y)-7xy=42,\end{cases}\]解得\[\begin{cases}x+y=-14,\\xy=-38,\end{cases}\]因此\[A_5=-14A_4+38A_3=20.\] 在上述解法中可以注意到\(x+y\)与\(xy\),联想韦达定理,可以改写解法如下.
设\(x,y\)是方程\[t^2=\alpha\cdot t+\beta\]的两根,则\[\begin{split}ax^n=\alpha\cdot ax^{n-1}+\beta\cdot ax^{n-2},\\by^n=\alpha\cdot by^{n-1}+\beta\cdot by^{n-2},\end{split}\]于是就有\[ax^n+by^n=\alpha\left(ax^{n-1}+by^{n-1}\right)+\beta\left(ax^{n-2}+by^{n-2}\right),\]以下略.
下面给出一道题目作为练习:
已知\[\begin{cases}x+y+z=1,\\x^2+y^2+z^2=2,\\x^3+y^3+z^3=3,\end{cases}\]求\(x^5+y^5+z^5\)的值.
答案 \(6\).
提示 令\(A_n=x^n+y^n+z^n\),则\[A_n=\alpha\cdot A_{n-1}+\beta\cdot A_{n-2}+\gamma\cdot A_{n-3},\]其中\(\alpha=x+y+z=1\),\(\beta=-(xy+yz+zx)=\dfrac 12\),\(\gamma=xyz=\dfrac 16\).
你有没有QQ,发给你,好吗?
我不知怎么了,一发上去就要审核,审核结束后就会缺少字符。
怎么办?
2825739503,谢谢!
牛顿恒等式推广的证明:
[Pleft( t right) = prodlimits_{i = 1}^n {left( {t - {x_i}} right)} = {t^n} + {c_1}{t^{n - 1}} + ldots + {c_{n - 1}}t + {c_n} = sumlimits_{i = 1}^n {{c_{i - 1}}{t^{n - i + 1}}}\
Pleft( {{x_i}} right) = sumlimits_{i = 1}^n {{c_{i - 1}}{t^{n - i + 1}}} = {x_i}^n + {c_1}{x_i}^{n - 1} + ldots + {c_{n - 1}}{x_i} + {c_n} = 0\
{A_i}{x_i}^kPleft( {{x_i}} right) = {A_i}{x_i}^{n + k} + {c_1}{A_i}{x_i}^{n + k - 1} + ldots + {c_{n - 1}}{A_i}{x_i}^{k + 1} + {c_n}{A_i}{x_i}^k = 0\
sumlimits_{i = 1}^n {{A_i}{x_i}^kPleft( {{x_i}} right)} = {T_{n + k}} + {c_1}{T_{n + k - 1}} + ldots + {c_{n - 1}}{T_{k + 1}} + {c_n}{T_k} = 0]
注意:
$$c_0S_k+c_1S_{k-1}+cdots+c_nS_{k-n}=0(nleqslant k)tag{*}$$
其中的$color{red}{1leqslant k}$可以去掉,将牛顿恒等式中的$color{red}{kin N_+}$推广为$color{red}{kin Z}$
证明:
对方程$f(x)=c_0x^n+c_1x^{n-1}+cdots+c_n=0,(c_0ne0)$
作倒数变换$x=frac{1}{y}$,得:
$g(y)=c_ny^n+c_{n-1}y^{n-1}+cdots+c_0=0,(c_nne0)$
方程$g(y)=0$的$n$个根分别为原方程方程$f(x)=0$的$n$个根的倒数
记${S_k}^prime=y_1^k+y_2^k+cdots +y_n^k$
则${S_k}^prime={S_{-k}}$
对新方程运用$({*})$式的结论,可知
$c_n{S_k}^prime+c_{n-1}{S_{k-1}}^prime+cdots+c_{1}{S_{k-n+1}}^prime+c_0{S_{k-n}}^prime=0$
$c_n{S_{-k}}+c_{n-1}{S_{1-k}}+cdots+c_{1}{S_{-1}}+c_0{S_{n-k}}=0tag{**}$
已知$x+y+z=1$,$x^2+y^2+z^2=2$,$x^3+y^3+z^3=3$,求$x^4+y^4+z^4$的值(1991年江苏省初中数学竞赛)
设$S_n= x^n + y^n+ z^n$,这里$x$、$y$、$z$是关于$t$一元三次方程$t^3 + c_1t + c_2t+c_3=0$的两个实根
则根据牛顿恒等式,有
[c_0S_k+c_1S_{k-1}+cdots+c_{k-1}S_1+kc_k=0(n3) ]
则
begin{eqnarray*}
{S_1} + {c_1} = 0\
{S_2} + {c_1}{S_1} + 2{c_2} = 0\
{S_3} + {c_1}{S_2} + {c_2}{S_1} + 3{c_3} = 0\ tag{1}
end{eqnarray*}
[{S_4} + c_1{S_{3}} + c_2{S_{2}} +c_3{S_{1}}=0tag{2}]
即
[left{ begin{array}{l}
1+ {c_1} = 0\
2 + {c_1} + 2{c_2} = 0\
3 + 2{c_1} + {c_2} + 3{c_3} = 0
end{array} right. Rightarrow left{ begin{array}{l}
{c_1} = -1\
{c_2} = -frac12\
{c_3} = -frac16
end{array} right.]
[{S_4}=-(c_1{S_{3}} + c_2{S_{2}} +c_3{S_{1}})=frac{25}{6}]
[{S_5}=-(c_1{S_{4}} + c_2{S_{3}} +c_3{S_{2}})=color{red}{6}]
则根据牛顿恒等式推广$left(**right)$,有
[c_3{S_{-1}} + c_2{S_{0}} + c_1{S_{1}} +{S_{2}}=0]
即
[{S_{-1}} = -frac{c_2{S_{0}} + c_1{S_{1}} +{S_{2}}}{c_3} =-3]
有
[c_3{S_{-2}} + c_2{S_{-1}} + c_1{S_{0}} +{S_{1}}=0]
即
[{S_{-2}} = -frac{c_2{S_{-2}} + c_1{S_{0}} +{S_{1}}}{c_3} =-3]
[frac{1}{x^2} + frac{1}{y^2} +frac{1}{z^2}=-3]
不要惊讶!上式的平方和怎么会等于负数呢?因为原方程有虚根!
之后的以此类推……
http://www.pep.com.cn/rjwk/gzsxsxkj/sxkj2014/sxkj17/sxkj13gk/201408/t20140819_1214626.htm
Newton's identities
http://fermatslasttheorem.blogspot.com/2007/02/newtons-identities.html
Newton-Girard formulas
Newton-Girard power sum formulas
这个别删!
缺少大量的\字符.
牛顿恒等式推广的证明:
[Pleft( t right) = prodlimits_{i = 1}^n {left( {t - {x_i}} right)} = {t^n} + {c_1}{t^{n - 1}} + ldots + {c_{n - 1}}t + {c_n} = sumlimits_{i = 1}^n {{c_{i - 1}}{t^{n - i + 1}}}\
Pleft( {{x_i}} right) = sumlimits_{i = 1}^n {{c_{i - 1}}{t^{n - i + 1}}} = {x_i}^n + {c_1}{x_i}^{n - 1} + ldots + {c_{n - 1}}{x_i} + {c_n} = 0\
{A_i}{x_i}^kPleft( {{x_i}} right) = {A_i}{x_i}^{n + k} + {c_1}{A_i}{x_i}^{n + k - 1} + ldots + {c_{n - 1}}{A_i}{x_i}^{k + 1} + {c_n}{A_i}{x_i}^k = 0\
sumlimits_{i = 1}^n {{A_i}{x_i}^kPleft( {{x_i}} right)} = {T_{n + k}} + {c_1}{T_{n + k - 1}} + ldots + {c_{n - 1}}{T_{k + 1}} + {c_n}{T_k} = 0]
注意:
$$c_0S_k+c_1S_{k-1}+cdots+c_nS_{k-n}=0(nleqslant k)tag{*}$$
其中的$color{red}{1leqslant k}$可以去掉,将牛顿恒等式中的$color{red}{kin N_+}$推广为$color{red}{kin Z}$
证明:
对方程$f(x)=c_0x^n+c_1x^{n-1}+cdots+c_n=0,(c_0ne0)$
作倒数变换$x=frac{1}{y}$,得:
$g(y)=c_ny^n+c_{n-1}y^{n-1}+cdots+c_0=0,(c_nne0)$
方程$g(y)=0$的$n$个根分别为原方程方程$f(x)=0$的$n$个根的倒数
记${S_k}^prime=y_1^k+y_2^k+cdots +y_n^k$
则${S_k}^prime={S_{-k}}$
对新方程运用$({*})$式的结论,可知
$c_n{S_k}^prime+c_{n-1}{S_{k-1}}^prime+cdots+c_{1}{S_{k-n+1}}^prime+c_0{S_{k-n}}^prime=0$
$c_n{S_{-k}}+c_{n-1}{S_{1-k}}+cdots+c_{1}{S_{-1}}+c_0{S_{n-k}}=0tag{**}$
已知$x+y+z=1$,$x^2+y^2+z^2=2$,$x^3+y^3+z^3=3$,求$x^4+y^4+z^4$的值(1991年江苏省初中数学竞赛)
设$S_n= x^n + y^n+ z^n$,这里$x$、$y$、$z$是关于$t$一元三次方程$t^3 + c_1t + c_2t+c_3=0$的两个实根
则根据牛顿恒等式,有
[c_0S_k+c_1S_{k-1}+cdots+c_{k-1}S_1+kc_k=0(n3) ]
则
begin{eqnarray*}
{S_1} + {c_1} = 0\
{S_2} + {c_1}{S_1} + 2{c_2} = 0\
{S_3} + {c_1}{S_2} + {c_2}{S_1} + 3{c_3} = 0\ tag{1}
end{eqnarray*}
[{S_4} + c_1{S_{3}} + c_2{S_{2}} +c_3{S_{1}}=0tag{2}]
即
[left{ begin{array}{l}
1+ {c_1} = 0\
2 + {c_1} + 2{c_2} = 0\
3 + 2{c_1} + {c_2} + 3{c_3} = 0
end{array} right. Rightarrow left{ begin{array}{l}
{c_1} = -1\
{c_2} = -frac12\
{c_3} = -frac16
end{array} right.]
[{S_4}=-(c_1{S_{3}} + c_2{S_{2}} +c_3{S_{1}})=frac{25}{6}]
[{S_5}=-(c_1{S_{4}} + c_2{S_{3}} +c_3{S_{2}})=color{red}{6}]
则根据牛顿恒等式推广$left(**right)$,有
[c_3{S_{-1}} + c_2{S_{0}} + c_1{S_{1}} +{S_{2}}=0]
即
[{S_{-1}} = -frac{c_2{S_{0}} + c_1{S_{1}} +{S_{2}}}{c_3} =-3]
有
[c_3{S_{-2}} + c_2{S_{-1}} + c_1{S_{0}} +{S_{1}}=0]
即
[{S_{-2}} = -frac{c_2{S_{-2}} + c_1{S_{0}} +{S_{1}}}{c_3} =-3]
[frac{1}{x^2} + frac{1}{y^2} +frac{1}{z^2}=-3]
不要惊讶!上式的平方和怎么会等于负数呢?因为原方程有虚根!
之后的以此类推……
http://www.pep.com.cn/rjwk/gzsxsxkj/sxkj2014/sxkj17/sxkj13gk/201408/t20140819_1214626.htm
Newton's identities
http://fermatslasttheorem.blogspot.com/2007/02/newtons-identities.html
Newton-Girard formulas
Newton-Girard power sum formulas
你有没有QQ,发给你,好吗?
删哪个?
2015年9月2日下午3:14
谢谢!
已经删除,刷新看看.这一楼在5点前删除.
牛顿恒等式
对多项式$f(x)=c_0x^n+c_1x^{n-1}+\cdots+c_n,(c_0\ne0)$
设方程$f(x)=0$的$n$个根为$x_1$,$x_2$,$\cdots$,$x_n$
对于$k\in N_+$,记$S_k=x_1^k+x_2^k+\cdots +x_n^k$则有
1.$c_0S_k+c_1S_{k-1}+\cdots+c_{k-1}S_1+kc_k=0$ ($1\leqslant k\leqslant n$)
2.$c_0S_k+c_1S_{k-1}+\cdots+c_nS_{k-n}=0$ ($n<k$)
http://fermatslasttheorem.blogspot.jp/2007/02/newtons-identities.html
已知实数$a$,$b$,$x$,$y$满足
\[\begin{cases}ax+by=3,\\ax^2+by^2=7,\\ax^3+by^3=16,\\ax^4+by^4=42,\end{cases}\]
求$ax^5+by^5$的值.
(第八届美国数学邀请赛)
设$S_n= x^n + y^n$,这里$x$、$y$是关于$t$一元二次方程$t^2 +c_1t + c_2=0$的两个实根
则根据牛顿恒等式,有
\begin{eqnarray*}
{S_1} + {c_1} = 0\\
{S_2} + {c_1}{S_1} + 2{c_2} = 0\\ \tag{1}
\end{eqnarray*}
以及
\begin{eqnarray*}
{S_3} + {c_1}{S_2} + {c_2}{S_1} = 0\\
{S_4} + {c_1}{S_3} + {c_2}{S_2} = 0\\
{S_5} + {c_1}{S_4} + {c_2}{S_3} = 0\\\cdots\\\tag{2}
\end{eqnarray*}
设$T_n= ax^n + by^n$,这里$x$、$y$是关于$t$一元二次方程$t^2 +c_1t + c_2=0$的两个实根
则根据牛顿恒等式的推广,有
\begin{eqnarray*}
{T_3} + {c_1}{T_2} + {c_2}{T_1} = 0\\
{T_4} + {c_1}{T_3} + {c_2}{T_2} = 0\\
{T_5} + {c_1}{T_4} + {c_2}{T_3} = 0\\\cdots\\\tag{2}
\end{eqnarray*}
http://www.pep.com.cn/rjwk/gzsxsxkj/sxkj2014/sxkj17/sxkj13gk/201408/t20140819_1214626.htm