每日一题[214] 利用方程进行递推

已知实数a,b,x,y满足{ax+by=3,ax2+by2=7,ax3+by3=16,ax4+by4=42,

ax5+by5的值.


cover 正确答案是20

  记An=axn+byn,其中n=1,2,,则An=(x+y)An1xyAn2,n3,

分别取n=3,4可得{7(x+y)3xy=16,16(x+y)7xy=42,
解得{x+y=14,xy=38,
因此A5=14A4+38A3=20.
在上述解法中可以注意到x+yxy,联想韦达定理,可以改写解法如下.

x,y是方程t2=αt+β

的两根,则axn=αaxn1+βaxn2,byn=αbyn1+βbyn2,
于是就有axn+byn=α(axn1+byn1)+β(axn2+byn2),
以下略.


下面给出一道题目作为练习:

已知{x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,

x5+y5+z5的值.

答案    6

提示    令An=xn+yn+zn,则An=αAn1+βAn2+γAn3,

其中α=x+y+z=1β=(xy+yz+zx)=12γ=xyz=16

此条目发表在每日一题分类目录,贴了, 标签。将固定链接加入收藏夹。

每日一题[214] 利用方程进行递推》有11条回应

  1. Oloid说:

    你有没有QQ,发给你,好吗?
    我不知怎么了,一发上去就要审核,审核结束后就会缺少字符。
    怎么办?

  2. Oloid说:

    牛顿恒等式推广的证明:
    [Pleft( t right) = prodlimits_{i = 1}^n {left( {t - {x_i}} right)} = {t^n} + {c_1}{t^{n - 1}} + ldots + {c_{n - 1}}t + {c_n} = sumlimits_{i = 1}^n {{c_{i - 1}}{t^{n - i + 1}}}\
    Pleft( {{x_i}} right) = sumlimits_{i = 1}^n {{c_{i - 1}}{t^{n - i + 1}}} = {x_i}^n + {c_1}{x_i}^{n - 1} + ldots + {c_{n - 1}}{x_i} + {c_n} = 0\
    {A_i}{x_i}^kPleft( {{x_i}} right) = {A_i}{x_i}^{n + k} + {c_1}{A_i}{x_i}^{n + k - 1} + ldots + {c_{n - 1}}{A_i}{x_i}^{k + 1} + {c_n}{A_i}{x_i}^k = 0\
    sumlimits_{i = 1}^n {{A_i}{x_i}^kPleft( {{x_i}} right)} = {T_{n + k}} + {c_1}{T_{n + k - 1}} + ldots + {c_{n - 1}}{T_{k + 1}} + {c_n}{T_k} = 0]

    注意:
    c0Sk+c1Sk1+cdots+cnSkn=0(nleqslantk)tag


    其中的colorred1leqslantk可以去掉,将牛顿恒等式中的colorredkinN+推广为colorredkinZ
    证明:
    对方程f(x)=c0xn+c1xn1+cdots+cn=0,(c0ne0)
    作倒数变换x=frac1y,得:
    g(y)=cnyn+cn1yn1+cdots+c0=0,(cnne0)
    方程g(y)=0n个根分别为原方程方程f(x)=0n个根的倒数
    Skprime=yk1+yk2+cdots+ykn
    Skprime=Sk
    对新方程运用()式的结论,可知
    cnSkprime+cn1Sk1prime+cdots+c1Skn+1prime+c0Sknprime=0
    cnSk+cn1S1k+cdots+c1S1+c0Snk=0tag

    已知x+y+z=1x2+y2+z2=2x3+y3+z3=3,求x4+y4+z4的值(1991年江苏省初中数学竞赛)
    Sn=xn+yn+zn,这里xyz是关于t一元三次方程t3+c1t+c2t+c3=0的两个实根
    则根据牛顿恒等式,有
    [c_0S_k+c_1S_{k-1}+cdots+c_{k-1}S_1+kc_k=0(n3) ]

    begin{eqnarray*}
    {S_1} + {c_1} = 0\
    {S_2} + {c_1}{S_1} + 2{c_2} = 0\
    {S_3} + {c_1}{S_2} + {c_2}{S_1} + 3{c_3} = 0\ tag{1}
    end{eqnarray*}
    [{S_4} + c_1{S_{3}} + c_2{S_{2}} +c_3{S_{1}}=0tag{2}]

    [left{ begin{array}{l}
    1+ {c_1} = 0\
    2 + {c_1} + 2{c_2} = 0\
    3 + 2{c_1} + {c_2} + 3{c_3} = 0
    end{array} right. Rightarrow left{ begin{array}{l}
    {c_1} = -1\
    {c_2} = -frac12\
    {c_3} = -frac16
    end{array} right.]
    [{S_4}=-(c_1{S_{3}} + c_2{S_{2}} +c_3{S_{1}})=frac{25}{6}]
    [{S_5}=-(c_1{S_{4}} + c_2{S_{3}} +c_3{S_{2}})=color{red}{6}]
    则根据牛顿恒等式推广left(right),有
    [c_3{S_{-1}} + c_2{S_{0}} + c_1{S_{1}} +{S_{2}}=0]

    [{S_{-1}} = -frac{c_2{S_{0}} + c_1{S_{1}} +{S_{2}}}{c_3} =-3]

    [c_3{S_{-2}} + c_2{S_{-1}} + c_1{S_{0}} +{S_{1}}=0]

    [{S_{-2}} = -frac{c_2{S_{-2}} + c_1{S_{0}} +{S_{1}}}{c_3} =-3]
    [frac{1}{x^2} + frac{1}{y^2} +frac{1}{z^2}=-3]
    不要惊讶!上式的平方和怎么会等于负数呢?因为原方程有虚根!
    之后的以此类推……

    http://www.pep.com.cn/rjwk/gzsxsxkj/sxkj2014/sxkj17/sxkj13gk/201408/t20140819_1214626.htm
    Newton's identities
    http://fermatslasttheorem.blogspot.com/2007/02/newtons-identities.html
    Newton-Girard formulas
    Newton-Girard power sum formulas

    这个别删!

    • Avatar photo 意琦行说:

      缺少大量的\字符.

      • Oloid说:

        牛顿恒等式推广的证明:
        [Pleft( t right) = prodlimits_{i = 1}^n {left( {t - {x_i}} right)} = {t^n} + {c_1}{t^{n - 1}} + ldots + {c_{n - 1}}t + {c_n} = sumlimits_{i = 1}^n {{c_{i - 1}}{t^{n - i + 1}}}\
        Pleft( {{x_i}} right) = sumlimits_{i = 1}^n {{c_{i - 1}}{t^{n - i + 1}}} = {x_i}^n + {c_1}{x_i}^{n - 1} + ldots + {c_{n - 1}}{x_i} + {c_n} = 0\
        {A_i}{x_i}^kPleft( {{x_i}} right) = {A_i}{x_i}^{n + k} + {c_1}{A_i}{x_i}^{n + k - 1} + ldots + {c_{n - 1}}{A_i}{x_i}^{k + 1} + {c_n}{A_i}{x_i}^k = 0\
        sumlimits_{i = 1}^n {{A_i}{x_i}^kPleft( {{x_i}} right)} = {T_{n + k}} + {c_1}{T_{n + k - 1}} + ldots + {c_{n - 1}}{T_{k + 1}} + {c_n}{T_k} = 0]

        注意:
        c0Sk+c1Sk1+cdots+cnSkn=0(nleqslantk)tag


        其中的colorred1leqslantk可以去掉,将牛顿恒等式中的colorredkinN+推广为colorredkinZ
        证明:
        对方程f(x)=c0xn+c1xn1+cdots+cn=0,(c0ne0)
        作倒数变换x=frac1y,得:
        g(y)=cnyn+cn1yn1+cdots+c0=0,(cnne0)
        方程g(y)=0n个根分别为原方程方程f(x)=0n个根的倒数
        Skprime=yk1+yk2+cdots+ykn
        Skprime=Sk
        对新方程运用()式的结论,可知
        cnSkprime+cn1Sk1prime+cdots+c1Skn+1prime+c0Sknprime=0
        cnSk+cn1S1k+cdots+c1S1+c0Snk=0tag

        已知x+y+z=1x2+y2+z2=2x3+y3+z3=3,求x4+y4+z4的值(1991年江苏省初中数学竞赛)
        Sn=xn+yn+zn,这里xyz是关于t一元三次方程t3+c1t+c2t+c3=0的两个实根
        则根据牛顿恒等式,有
        [c_0S_k+c_1S_{k-1}+cdots+c_{k-1}S_1+kc_k=0(n3) ]

        begin{eqnarray*}
        {S_1} + {c_1} = 0\
        {S_2} + {c_1}{S_1} + 2{c_2} = 0\
        {S_3} + {c_1}{S_2} + {c_2}{S_1} + 3{c_3} = 0\ tag{1}
        end{eqnarray*}
        [{S_4} + c_1{S_{3}} + c_2{S_{2}} +c_3{S_{1}}=0tag{2}]

        [left{ begin{array}{l}
        1+ {c_1} = 0\
        2 + {c_1} + 2{c_2} = 0\
        3 + 2{c_1} + {c_2} + 3{c_3} = 0
        end{array} right. Rightarrow left{ begin{array}{l}
        {c_1} = -1\
        {c_2} = -frac12\
        {c_3} = -frac16
        end{array} right.]
        [{S_4}=-(c_1{S_{3}} + c_2{S_{2}} +c_3{S_{1}})=frac{25}{6}]
        [{S_5}=-(c_1{S_{4}} + c_2{S_{3}} +c_3{S_{2}})=color{red}{6}]
        则根据牛顿恒等式推广left(right),有
        [c_3{S_{-1}} + c_2{S_{0}} + c_1{S_{1}} +{S_{2}}=0]

        [{S_{-1}} = -frac{c_2{S_{0}} + c_1{S_{1}} +{S_{2}}}{c_3} =-3]

        [c_3{S_{-2}} + c_2{S_{-1}} + c_1{S_{0}} +{S_{1}}=0]

        [{S_{-2}} = -frac{c_2{S_{-2}} + c_1{S_{0}} +{S_{1}}}{c_3} =-3]
        [frac{1}{x^2} + frac{1}{y^2} +frac{1}{z^2}=-3]
        不要惊讶!上式的平方和怎么会等于负数呢?因为原方程有虚根!
        之后的以此类推……

        http://www.pep.com.cn/rjwk/gzsxsxkj/sxkj2014/sxkj17/sxkj13gk/201408/t20140819_1214626.htm
        Newton's identities
        http://fermatslasttheorem.blogspot.com/2007/02/newtons-identities.html
        Newton-Girard formulas
        Newton-Girard power sum formulas

  3. Avatar photo 意琦行说:

    删哪个?

  4. Oloid说:

    牛顿恒等式
    对多项式f(x)=c0xn+c1xn1++cn,(c00)
    设方程f(x)=0n个根为x1x2xn
    对于kN+,记Sk=xk1+xk2++xkn则有
    1.c0Sk+c1Sk1++ck1S1+kck=0 (1kn)
    2.c0Sk+c1Sk1++cnSkn=0 (n<k)

    http://fermatslasttheorem.blogspot.jp/2007/02/newtons-identities.html

  5. Oloid说:

    已知实数abxy满足
    {ax+by=3,ax2+by2=7,ax3+by3=16,ax4+by4=42,


    ax5+by5的值.
    (第八届美国数学邀请赛)
    Sn=xn+yn,这里xy是关于t一元二次方程t2+c1t+c2=0的两个实根
    则根据牛顿恒等式,有
    S1+c1=0S2+c1S1+2c2=0

    以及
    S3+c1S2+c2S1=0S4+c1S3+c2S2=0S5+c1S4+c2S3=0

    Tn=axn+byn,这里xy是关于t一元二次方程t2+c1t+c2=0的两个实根
    则根据牛顿恒等式的推广,有
    T3+c1T2+c2T1=0T4+c1T3+c2T2=0T5+c1T4+c2T3=0

    http://www.pep.com.cn/rjwk/gzsxsxkj/sxkj2014/sxkj17/sxkj13gk/201408/t20140819_1214626.htm

发表回复