2024年12月辽宁省名校联盟高三数学试卷 19
如图,已知点列 Pn(xn,4xn) 与 An(an,0) 满足 xn+1>xn,→PnPn+1⊥→AnPn+1 且 |→PnPn+1|=|→AnPn+1|,其中 n∈N∗,x1=√2.
1、求 xn+1 与 xn 的关系式;
2、证明:2n2+4n+4⩽x21+x22+x23+⋯+x2n+1⩽4n2+6n.
解析
1、根据题意,有→Pn+1Pn=(xn−xn+1,4xn−4xn+1),→Pn+1An=(an−xn+1,−4xn+1),
而 xn+1>xn,→PnPn+1⊥→AnPn+1 且 |→PnPn+1|=|→AnPn+1|,于是{xn−xn+1=−4xn+1,4xn−4xn+1=−(an−xn+1),
从而{xn=xn+1−4xn+1,an=xn+1+4xn+1−4xn.
2、当 n=1 时,x21+x22=10,符合不等式;分析通项,只需要证明当 n⩾2 时,有4n+2⩽x2n+1⩽8n+2,
根据第 (1) 小题的结果,有x2n=x2n+1−8+16x2n+1⟹x2n+1−x2n=8−16x2n+1<8,
而 x21=2,x22=8,于是当 n⩾2 时有x2n+1−x22⩽8(n−1)⟹x2n+1⩽8n,
进而x2n+1−x2n>x2n+1−xnxn+1=xn+1(x2n+1−xn)=4,
于是当 n⩾2 时,有x2n+1−x22⩾4(n−1)⟹x2n+1⩾4n+4,
综上所述,命题得证.
备注 当 n⩾2 时,有xn+1−xn=4xn+1⩾4√8n=2√22√n⩾2√2√n+1+√n=2√2(√n+1−√n),
于是当 n⩾2 时,有xn+1−x2⩾2√2(√n+1−√2)⟹xn+1⩾2√2(n+1)−4+2√2,
于是x2n+1⩾8n−16(√2−1)(√n+1−√2),
这是更强的下界.