2024年9月炎德英才名校联考联合体高三第1次联考 #8
若 $\alpha,\beta,\gamma\in\left(2\pi,\dfrac{5\pi}2\right)$,且\[\sin\alpha-2\cos\dfrac{\beta+\gamma}2\sin\dfrac{\beta-\gamma}2=\cos\alpha-2\cos\dfrac{\beta+\gamma}2\cos\dfrac{\beta-\gamma}2=0,\]则 $\sin (\alpha-\beta)=$ ( )
A.$\pm\dfrac 1 2$
B.$\dfrac 1 2$
C.$\pm\dfrac{\sqrt 3}2$
D.$-\dfrac{\sqrt 3}2$
答案 D.
解析 根据题意,有\[\sin\alpha-(\sin\beta-\sin\gamma)=\cos\alpha-(\cos\beta+\cos\gamma)=0,\]于是\[\begin{cases} \sin\gamma =-\sin\alpha+\sin\beta,\\ \cos\gamma=\cos\alpha-\cos\beta,\end{cases}\implies 1=(-\sin\alpha+\sin\beta)^2+(\cos\alpha-\cos\beta)^2,\]整理可得 $\cos(\alpha-\beta)=\dfrac 12$,又 $\alpha,\beta,\gamma\in\left(2\pi,\dfrac{5\pi}2\right)$,于是\[-\sin\alpha+\sin\beta=\sin\gamma>0\implies -\dfrac{\pi}2<\alpha-\beta<0,\]从而 $\sin (\alpha-\beta)= -\dfrac{\sqrt 3}2$.