已知 $a, b, c$ 互不相等且\[\frac{a+b}{a-b}=\frac{b+c}{2(b-c)}=\frac{c+a}{3(c-a)}, \]求证:$8 a+9 b+5 c=0$.
解析
法一
根据题意,设\[\begin{cases} a+b=t(a-b),\\ b+c=2t(b-c),\\ c+a=3t(c-a),\end{cases}\]于是\[6\cdot t(a-b)+3\cdot 2t(b-c)+2\cdot 3t(c-a)=6(a+b)+3(b+c)+2(c+a),\]也即\[8a+9b+5c=0,\]命题得证.
法二
根据题意,有\[\dfrac{a+b}{a-b}=t\iff \dfrac ab=\dfrac{t+1}{t-1},\]类似的,可得\[\dfrac bc=\dfrac{2t+1}{2t-1},\quad \dfrac ca=\dfrac{3t+1}{3t-1},\]于是\[\dfrac{t+1}{t-1}\cdot \dfrac{2t+1}{2t-1}\cdot \dfrac{3t+1}{3t-1}=1\iff 11t^2+1=0,\]而\[8a+9b+5c=\left(8+9\cdot \dfrac{t-1}{t+1}+5\cdot \dfrac{3t+1}{3t-1}\right)a=\dfrac{6(11t^2+1)}{(t+1)(3t-1)}.\]