已知函数$f(x)=x^2+ax+b$($a,b\in\mathbb R$)在区间$(0,1]$上有零点\(x_0\),则$$ab\left(\dfrac{x_0}4+\dfrac{1}{9x_0}-\dfrac 13\right)$$的最大值是________.
分析与解 正确答案是$\dfrac{1}{144}$.
因为$x_0^2+ax_0+b=0$,所以$$b=-x_0^2-ax_0.$$根据题意,有\[\begin{split}ab\left(\dfrac{x_0}4+\dfrac{1}{9x_0}-\dfrac 13\right)&=a\cdot \left(-x_0^2-ax_0\right)\cdot \left(\dfrac{x_0}4+\dfrac{1}{9x_0}-\dfrac 13\right)\\&=\dfrac {1}{36}a\left(-x_0-a\right)\left(3x_0-2\right)^2\\&\leqslant \dfrac{1}{36}\cdot \dfrac{x_0^2}4\cdot \left(3x_0-2\right)^2\\&=\dfrac{1}{144}\cdot \left[x_0\left(3x_0-2\right)\right]^2\\&\leqslant \dfrac{1}{144},\end{split}\]等号当$x_0=1$,$a=-\dfrac 12$时取得.因此所求的最大值为$\dfrac{1}{144}$.
几乎只能这么想了,我觉得