设数列$\{a_n\}$满足:$a_1=2$,$a_{n+1}=ca_n+\dfrac 1{a_n}$,其中$c$为正实数,$n\in\mathcal N^*$.记数列$\{a_n\}$的前$n$项和为$S_n$.
(1)证明:当$c=2$时,$2^{n+1}-2\leqslant S_n\leqslant 3^n-1$($n\in\mathcal N^*$);
(2)求实数$c$的取值范围,使得数列$\{a_n\}$是单调递减数列.
证明与解 (1)由于$a_{n+1}-a_n=a_n+\dfrac{1}{a_n}>0$,于是$a_n>1$,从而由$$\dfrac{a_{n+1}}{a_n}=2+\dfrac{1}{a_n^2}$$可得$$2<\dfrac{a_{n+1}}{a_n}<3,$$因此$$2\cdot 2^{n-1}\leqslant a_n\leqslant 2\cdot 3^{n-1},$$累加即得$$2^{n+1}-2\leqslant S_n\leqslant 3^n-1.$$
(2)考虑到$a_2=2c+\dfrac 12<a_1$,于是$0<c<\dfrac 34$.
记迭代函数$f(x)=cx+\dfrac 1x$,则函数$f(x)$在$\left(0,\dfrac{1}{\sqrt c}\right)$上单调递减,在$\left(\dfrac{1}{\sqrt c},+\infty\right)$上单调递增.由于$a_1=2>\dfrac{1}{\sqrt{1-c}}$,于是只需要考虑函数$f(x)$的不动点$x=\dfrac{1}{\sqrt{1-c}}$与$\dfrac 1{\sqrt c}$的位置关系.
由$a_{n+1}<a_n$知$ca_n+\dfrac {1}{a_n}<a_n$,于是有$a_n>\dfrac {1}{\sqrt{1-c}}$.
第一种情况,$\dfrac{1}{\sqrt{1-c}}\geqslant \dfrac{1}{\sqrt c}$,即$\dfrac 12\leqslant c<\dfrac 34$时.
此时由$$a_1>a_2>\dfrac{1}{\sqrt{1-c}}\geqslant \dfrac{1}{\sqrt c},$$以及函数$f(x)$在$\left(\dfrac{1}{\sqrt c},+\infty\right)$上单调递增可得$$f(a_1)>f(a_2)>f\left(\dfrac{1}{\sqrt{1-c}}\right)\geqslant \dfrac{1}{\sqrt c},$$即$$a_2>a_3>\dfrac{1}{\sqrt{1-c}}\geqslant \dfrac{1}{\sqrt c},$$依此类推,数列$\{a_n\}$单调递减.
第二种情况,$\dfrac{1}{\sqrt{1-c}}<\dfrac{1}{\sqrt c}$,即$0<c<\dfrac 12$时.
此时利用不动点改造递推公式,有$$a_{n+1}-\dfrac{1}{\sqrt{1-c}}=\left(c-\dfrac{\sqrt{1-c}}{a_n}\right)\cdot\left(a_n-\dfrac{1}{\sqrt{1-c}}\right).$$又因为$a_n>\dfrac{1}{\sqrt{1-c}}$,且$\{a_n\}$单调递减,于是$$0<c-\dfrac{\sqrt{1-c}}{a_n}<c,$$因此$$a_{n+1}-\dfrac{1}{\sqrt{1-c}}<c^n\cdot \left(a_1-\dfrac{1}{\sqrt{1-c}}\right),$$也即数列$\{a_n\}$收敛于$\dfrac{1}{\sqrt {1-c}}$.因此必然存在某项$a_k$落在区间$\left(\dfrac{1}{\sqrt{1-c}},\dfrac{1}{\sqrt c}\right)$上,即$$\dfrac{1}{\sqrt{1-c}}<a_{k+1}<a_k<\dfrac{1}{\sqrt c},$$结合$f(x)$在此区间上单调递减,于是有$$f(a_{k+1})>f(a_k),$$也即$$a_{k+2}>a_{k+1},$$矛盾.
综上所述,$c$的取值范围是$\left[\dfrac 12,\dfrac 34\right)$.