设 a,b,c>0,a+b+c=abc.求证:∑cyc1√1+a2⩽32.
解析 根据题意,有1ab+1bc+1ca=1,于是∑cyc1√1+a2=∑cyc1a√1a2+1ab+1bc+1ca=∑cyc1a√(1a+1b)(1a+1c)=∑cyc√1a1a+1b⋅1a1a+1c⩽12∑cyc(1a1a+1b+1a1a+1c)=32,命题得证.
要发表评论,您必须先登录。