对于 x∈R,f(x) 满足 f(x)+f(1−x)=1,f(x)=2f(x5),且对于 0⩽,恒有 f\left(x_{1}\right) \leqslant f\left(x_{2}\right),则 f\left(\dfrac{1}{2022}\right)= ( )
A.\dfrac 18
B.\dfrac{1}{16}
C.\dfrac{1}{32}
D.\dfrac{1}{64}
答案 C.
解析 在 f(x)=2 f\left(\dfrac{x}{5}\right) 中令 x=0 可得 f(0)=0,进而由 f(x)+f(1-x)=1 可得 f(1)=1.由于 f(0)=0,f(1)=1,f\left(\dfrac 15\right)=f\left(\dfrac 45\right)=\dfrac 12,因此 f(x)=\dfrac 12,x\in\left[\dfrac 15,\dfrac 45\right].进而可得 f\left(\dfrac{x}{5^n}\right)=\dfrac{1}{2^n}f(x),因此有f(x)=\dfrac{1}{2^n},\dfrac{1}{5^n}\leqslant x\leqslant \dfrac{4}{5^n}.综上所述,有 f\left(\dfrac{1}{2022}\right)=\dfrac{1}{32}.