已知数列 $\{a_n\}$ 满足 $a_{n+1}a_n-2n^2(a_{n+1}-a_n)+1=0$,且 $a_1=1$,其前 $n$ 项和为 $S_n$,则 $S_{15}=$( )
A.$196$
B.$225$
C.$256$
D.$289$
答案 B.
解析 根据题意,有\[a_{n+1}=\dfrac{2n^2a_n+1}{2n^2-a_n}=\dfrac{a_n+\dfrac{1}{2n^2}}{1-a_n\cdot \dfrac1{2n^2}},\]设 $a_n=\tan\theta_n$,$\theta_n\in\left(-\dfrac{\pi}2,\dfrac{\pi}2\right)$,且 $\theta_1=\dfrac{\pi}4$,则有\[\theta_{n+1}=\theta_n+\arctan\dfrac{1}{2n^2}\iff \theta_{n+1}-\arctan(2n+1)=\theta_n-\arctan(2n-1),\]进而\[\theta_{n+1}-\arctan(2n+1)=\theta_n-\arctan(2n-1)=\cdots=\theta_1-\arctan 1=0,\]因此\[\theta_n=\arctan(2n-1)\implies a_n=2n-1,\]因此\[S_{15}=\sum_{k=1}^{15}(2k-1)=225.\]