设\(n\)为给定的不小于\(5\)的正整数,考察\(n\)个不同的正整数\(a_1,a_2,a_3,\cdots,a_n\)构成的集合\(P=\left\{a_1,a_2,a_3,\cdots,a_n\right\}\),若集合\(P\)的任何两个不同的非空子集所含元素的总和均不相等,则称集合\(P\)为“差异集合”.
(1)分别判断集合\(A=\left\{1,3,8,13,23\right\}\),集合\(B=\left\{1,2,4,8,16\right\}\)是否是“差异集合”(只需写出结论);
(2)设集合\(P=\left\{a_1,a_2,a_3,\cdots,a_n\right\}\)是“差异集合”,记\(b_i=a_i-2^{i-1}\)(\(i=1,2,\cdots,n\)),求证:数列\(\left\{b_i\right\}\)的前\(k\)项和\(D_k\geqslant 0\)(\(k=1,2,\cdots,n\));
(3)设集合\(P=\left\{a_1,a_2,a_3,\cdots,a_n\right\}\)是“差异集合”,求\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+\cdots+\dfrac{1}{a_n}\)的最大值.
(1)根据“差异集合”的定义,集合\(A\)不是“差异集合”(因为\(1+23=3+8+13\)),而集合\(B\)是“差异集合”(因为\(B=\left\{00001_{(2)},00010_{(2)},00100_{(2)},01000_{(2)},10000_{(2)}\right\}\)).
(2)欲证明结论即\[\forall n\in\mathcal N^*,\left(a_1-1\right)+\left(a_2-2\right)+\left(a_3-2^2\right)+\cdots+\left(a_n-2^{n-1}\right)\geqslant 0,\]也即\[\forall n\in\mathcal N^*,a_1+a_2+a_3+\cdots+a_n\geqslant 1+2+2^2\cdots+2^{n-1}=2^n-1.\]
事实上,集合\(P\)的非空子集共有\(2^n-1\)个,这些子集中的元素之和互不相等,因此这\(2^n-1\)个和的最大数\[a_1+a_2+a_3+\cdots+a_n\geqslant 2^n-1,\]等号当\(a_i=2^{i-1},i=1,2,3,\cdots,n\)时取得.
(3)\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+\cdots+\dfrac{1}{a_n}\)的最大值为\[1+\dfrac{1}{2}+\dfrac{1}{4}+\cdots+\dfrac{1}{2^{n-1}},\]证明如下.
不妨设\(a_1<a_2<\cdots<a_n\).
考虑两者之差\[\begin{split}\sum_{i=1}^{n}{\dfrac{1}{2^{i-1}}}-\sum_{i=1}^{n}{\dfrac{1}{a_i}}&=\dfrac{a_1-1}{a_1}+\dfrac{a_2-2}{2a_2}+\dfrac{a_3-2^2}{2^2\cdot a_3}+\cdots+\dfrac{a_n-2^{n-1}}{2^{n-1}\cdot a_n}\\&=\dfrac{b_1}{a_1}+\dfrac{b_2}{2a_2}+\dfrac{b_3}{2^2\cdot a_3}+\cdots+\dfrac{b_n}{2^{n-1}\cdot a_n}\\&=\dfrac{D_1}{a_1}+\dfrac{D_2-D_1}{2a_2}+\dfrac{D_3-D_2}{2^2\cdot a_3}+\cdots+\dfrac{D_n-D_{n-1}}{2^{n-1}\cdot a_n}\\&=D_1\cdot\left(\dfrac{1}{a_1}-\dfrac{1}{2a_2}\right)+D_2\cdot\left(\dfrac{1}{2a_2}-\dfrac{1}{2^2a_3}\right)+\cdots+D_{n-1}\cdot\left(\dfrac{1}{2^{n-2}a_{n-1}}-\dfrac{1}{2^{n-1}a_n}\right)\\&\geqslant 0,\end{split}\]等号当\(a_i=2^{i-1},i=1,2,3,\cdots,n\)时取得.
因此\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+\cdots+\dfrac{1}{a_n}\)的最大值为\(\sum\limits_{i=1}^{n}{\dfrac{1}{2^{i-1}}}=1-\dfrac{1}{2^{n-1}}\).
注 第三小问的证明思路来自于Abel求和公式\[\sum_{i=1}^{n}{a_i\cdot b_i}=\sum_{i=1}^{n}{S\left(a_i\right)\cdot\Delta\left(b_i\right)},\]其中\[\begin{split}S\left(a_i\right)&=a_1+a_2+\cdots+a_i,i=1,2,\cdots,n,\\\Delta\left(b_i\right)&=b_i-b_{i+1},i=1,2,\cdots,n-1\land \Delta\left(b_n\right)=b_n.\end{split}\]这是级数不等式放缩的重要恒等式.
第三问最后一步放缩没看懂...是不是用了an+1≥2an?但之前没证明啊
可以不妨设\(\left\{a_n\right\}\)递增,接下来的事就显然了.
第二问,有两处不等式方向似乎不对