如图,\(D\)为\(\triangle ABC\)内一点,满足\(\angle ABC=\angle BCD=30^\circ\),\(\angle ABD=\angle ACD\),\(BD=7\sqrt 3\),\(AC=5\sqrt 3\),求\(AD\)的长.分析 由已知中\(\angle ABC=\angle BCD=30^\circ\),易得等腰三角形\(PBC\),再由\(\angle ABD=\angle ACD\),从而想到去证三角形全等.
方法一 延长\(CD\)与\(AB\)交于点\(P\),则\[PB=PC,\angle APC=60^\circ.\]又\(\angle ABD=\angle ACD\),故构造全等,截取\(BQ=AC\),得\[\triangle PBQ\cong \triangle PCA.\]所以\[PQ=PA,\angle BPQ=\angle CPA=60^\circ.\]从而\[\triangle PDQ\cong \triangle PDA.\]所以\[AD=DQ=BD-AC=2\sqrt 3.\]
方法二 如下图,同法可先证\(\triangle PDB\cong \triangle PMC\),再证\(\triangle PMA\cong \triangle PDA\),从而使问题得到解决.