已知 $\triangle ABC$ 中,$AB=5$,$BC=12$,$CA=13$,$P$ 是 $\triangle ABC$ 内一点且 $\angle APB=\angle BPC=\angle CPA=120^\circ$,则 $\overrightarrow{PA}\cdot \overrightarrow{PB}+\overrightarrow{PB}\cdot \overrightarrow{PC}+\overrightarrow{PC}\cdot \overrightarrow{PA}=$ [[nn]].
答案 $-20\sqrt 3$.
解析 根据题意,有\[[\triangle PAB]+[\triangle PBC]+[\triangle PCA]=[\triangle ABC],\]注意到 $\angle APB=\angle BPC=\angle CPA=120^\circ$ 且 $\angle ABC=90^\circ$,于是\[\dfrac{\sqrt 3}4\left(PA\cdot PB+PB\cdot PC+PC\cdot PA\right)=\dfrac 12\cdot AB\cdot BC,\]因此\[\overrightarrow{PA}\cdot \overrightarrow{PB}+\overrightarrow{PB}\cdot \overrightarrow{PC}+\overrightarrow{PC}\cdot \overrightarrow{PA}=-\dfrac 12\left(PA\cdot PB+PB\cdot PC+PC\cdot PA\right)=-20\sqrt 3.\]