已知数列 $\left\{a_n\right\}$,$a_1=9$,$a_{n+1}=3 a_n+6\cdot 3^n$,$S_n$ 是 $\left\{a_n\right\}$ 的前 $n$ 项和.
1、证明:数列 $\left\{\dfrac{a_n}{3^n}\right\}$ 为等差数列;
2、求 $S_n$;
3、若 $b_n=\begin{cases}\dfrac{2 n}{S_n-n},&n~\text{为奇数,}\\(-1)^{\frac n 2+1}\cdot\dfrac{2\cdot 3^{n+1}}{S_n},&n~\text{为偶数},\end{cases}$ 记数列 $\left\{b_n\right\}$ 的前 $n$ 项和为 $T_n$,证明:$T_{4 n}<1$.参考数据:$\ln 2\approx 0.69$.
解析
1、根据题意,有\[a_{n+1}=3 a_n+6\cdot 3^n\implies \dfrac{a_{n+1}}{3^{n+1}}=\dfrac{a_n}{3^n}+2,\]于是数列 $\left\{\dfrac{a_n}{3^n}\right\}$ 为等差数列.
2、根据第 $(1)$ 小题的结论,有\[\dfrac{a_n}{3^n}=2(n-1)+\dfrac{a_1}{3}\implies a_n=(2n+1)\cdot 3^n,\]于是 $S_n=(An+B)\cdot 3^n-B$,其中\[A=\dfrac{2\cdot 3}{3-1}=3,\quad B=\dfrac{9-3\cdot 3}{3-1}=0,\]从而 $S_n=n\cdot 3^{n+1}$.
3、根据题意,有\[b_n=\begin{cases} \dfrac{2}{3^{n+1}-1},&n~\text{为奇数},\\ (-1)^{\frac n2+1}\cdot \dfrac 2n,&n~\text{为偶数},\end{cases}\]于是数列 $\{b_n\}$ 的奇子列前 $n$ 项和为\[\sum_{k=1}^n\dfrac{2}{9^k-1}\leqslant \sum_{k=1}^n\dfrac{2}{9^k-9^{k-1}}=\dfrac14\sum_{k=1}^n\dfrac{1}{9^{k-1}}<\dfrac14\cdot \dfrac{1}{1-\frac 19}=\dfrac{9}{32},\]而数列 $\{b_n\}$ 的偶子列前 $n$ 项和为\[\sum_{k=1}^n\left(\dfrac{1}{2k-1}-\dfrac{1}{2k}\right)=\dfrac 12+\dfrac14\sum_{k=2}^n\dfrac{1}{k\left(k-\frac 12\right)}<\dfrac 12+\dfrac14\sum_{k=2}^n\dfrac{1}{\left(k+\frac14\right)\left(k-\frac 34\right)}<\dfrac 12+\dfrac 14\cdot \dfrac 45=\dfrac{7}{10},\]从而数列 $\{b_n\}$ 的前 $n$ 项和\[T_n<\dfrac{9}{32}+\dfrac{7}{10}<\dfrac{9}{30}+\dfrac{7}{10}=1,\]命题得证.
备注 事实上,偶子列的前 $n$ 项和为\[\sum_{k=1}^n\left(\dfrac{1}{2k-1}-\dfrac{1}{2k}\right)=\left(\sum_{k=1}^{2n}\dfrac 1k-\sum_{k=1}^n\dfrac{1}{2k}\right)-\sum_{k=1}^n\dfrac{1}{2k}=\sum_{k=n+1}^{2n}\dfrac{1}{k}<\sum_{k=n+1}^{2n}\ln\left(1+\dfrac 1{k-1}\right)=\ln 2,\]以下略.