若单位圆内接四边形对角线互相垂直,则该四边形四条边的平方和是_______.
答案 $8$.
解析 设四边形的四个顶点对应的角分别为 $\theta_i$($i=1,2,3,4$),且 $0\leqslant \theta_1<\theta_2<\theta_3<\theta_4<2\pi$,则\[\dfrac{\theta_2+\theta_4}2-\dfrac{\theta_1+\theta_3}2=\dfrac{\pi}2\iff \begin{cases} (\theta_2-\theta_1)+(\theta_4-\theta_3)=\pi,\\ (\theta_3-\theta_2)+(\theta_4-\theta_1)=\pi,\end{cases}\]该四边形四条边的平方和\[\begin{split} S&=\sum_{\rm cyc}(\cos\theta_1-\cos\theta_2)^2+(\sin\theta_1-\sin\theta_2)^2\\ &=\sum_{\rm cyc}\left(2-2\cos(\theta_2-\theta_1)\right)\\ &=8.\end{split}\]