每日一题[3633]不动点改造

已知数列 $\left\{a_n\right\}$ 满足 $a_1=\dfrac{1}{2}$,$a_n a_{n+1}=2 a_{n+1}-1$($n=1,2,3, \cdots$),设 $T_n=a_1 a_2 \cdots a_n$,则 $T_{2025}=$(       )

A.$\dfrac{1}{2026}$

B.$\dfrac{1}{2025}$

C.$\dfrac{2024}{2025}$

D.$\dfrac{2025}{2026}$

答案    A.

解析    根据题意,利用不动点法改造递推数列,有\[a_{n+1}=\dfrac{1}{2-a_n}\implies \dfrac{1}{1-a_{n+1}}=\dfrac{1}{1-a_n}+1\implies \dfrac{1}{1-a_n}=n+1\implies a_n=\dfrac n{n+1},\]因此\[T_n=a_1a_2\cdot a_n=\dfrac{1}{n+1}\implies T_{2025}=\dfrac{1}{2026}.\]

此条目发表在每日一题分类目录,贴了标签。将固定链接加入收藏夹。

发表回复