2024年12月辽宁省名校联盟高三数学试卷 19
如图,已知点列 $P_n\left(x_n, \dfrac{4}{x_n}\right)$ 与 $A_n\left(a_n, 0\right)$ 满足 $x_{n+1}>x_n$,$\overrightarrow{P_n P_{n+1}} \perp \overrightarrow{A_n P_{n+1}}$ 且 $\left|\overrightarrow{P_n P_{n+1}}\right|=\left|\overrightarrow{A_n P_{n+1}}\right|$,其中 $n \in \mathbb{N}^{\ast}$,$x_1=\sqrt{2}$.

1、求 $x_{n+1}$ 与 $x_n$ 的关系式;
2、证明:$2 n^2+4 n+4 \leqslant x_1^2+x_2^2+x_3^2+\cdots+x_{n+1}^2 \leqslant 4 n^2+6 n$.
解析
1、根据题意,有\[\overrightarrow{P_{n+1}P_n}=\left(x_{n}-x_{n+1},\dfrac4{x_n}-\dfrac4{x_{n+1}}\right),\quad \overrightarrow{P_{n+1}A_n}=\left(a_n-x_{n+1},-\dfrac 4{x_{n+1}}\right),\]而 $x_{n+1}>x_n$,$\overrightarrow{P_n P_{n+1}} \perp \overrightarrow{A_n P_{n+1}}$ 且 $\left|\overrightarrow{P_n P_{n+1}}\right|=\left|\overrightarrow{A_n P_{n+1}}\right|$,于是\[\begin{cases} x_{n}-x_{n+1}=-\dfrac 4{x_{n+1}},\\ \dfrac4{x_n}-\dfrac4{x_{n+1}}=-\left(a_n-x_{n+1}\right),\end{cases}\]从而\[\begin{cases} x_n=x_{n+1}-\dfrac4{x_{n+1}},\\ a_n=x_{n+1}+\dfrac 4{x_{n+1}}-\dfrac 4{x_n}. \end{cases}\]
2、当 $n=1$ 时,$x_1^2+x_2^2=10$,符合不等式;分析通项,只需要证明当 $n\geqslant 2$ 时,有\[4n+2\leqslant x_{n+1}^2\leqslant 8n+2,\]根据第 $(1)$ 小题的结果,有\[x_n^2=x_{n+1}^2-8+\dfrac{16}{x_{n+1}^2}\implies x_{n+1}^2-x_n^2=8-\dfrac{16}{x_{n+1}^2}<8,\]而 $x_1^2=2$,$x_2^2=8$,于是当 $n\geqslant 2$ 时有\[x_{n+1}^2-x_2^2\leqslant 8(n-1)\implies x_{n+1}^2\leqslant 8n,\]进而\[x_{n+1}^2-x_n^2>x_{n+1}^2-x_nx_{n+1}=x_{n+1}(x_{n+1}^2-x_n)=4,\]于是当 $n\geqslant 2$ 时,有\[x_{n+1}^2-x_2^2\geqslant 4(n-1)\implies x_{n+1}^2\geqslant 4n+4,\]综上所述,命题得证.
备注 当 $n\geqslant 2$ 时,有\[\begin{split} x_{n+1}-x_n&=\dfrac 4{x_{n+1}}\\ &\geqslant \dfrac 4{\sqrt{8n}}=\dfrac{2\sqrt 2}{2\sqrt n}\\ &\geqslant \dfrac{2\sqrt 2}{\sqrt{n+1}+\sqrt{n}}\\ &=2\sqrt 2\left(\sqrt{n+1}-\sqrt{n}\right),\end{split}\]于是当 $n\geqslant 2$ 时,有\[x_{n+1}-x_2\geqslant 2\sqrt{2}\left(\sqrt{n+1}-\sqrt 2\right)\implies x_{n+1}\geqslant 2\sqrt{2(n+1)}-4+2\sqrt 2,\]于是\[x_{n+1}^2\geqslant 8n-16\left(\sqrt 2-1\right)\left(\sqrt{n+1}-\sqrt 2\right),\]这是更强的下界.