已知集合 $M=\left\{\theta_1, \theta_2, \cdots, \theta_n\right\}$,$n \in \mathbb N^{\ast}$,设函数\[ f_n(x)=\sin ^2\left(x-\theta_1\right)+\sin ^2\left(x-\theta_2\right)+\cdots+\sin ^2\left(x-\theta_n\right).\]
1、当 $M=\left\{0, \dfrac{\pi}{2}\right\}$ 和 $\left\{\dfrac{\pi}{4}, \dfrac{\pi}{2}\right\}$ 时,分别判断函数 $f_2(x)$ 是否是常数函数?说明理由;
2、已知 $M \subseteq\left\{\theta \mid \theta=\dfrac{k \pi}{12}, k \in \mathbb N, k \leqslant 12\right\}$,求函数 $f_3(x)$ 是常函数的概率;
3、写出函数 $f_n(x)$($n \geqslant 2$)是常函数的一个充分条件,并说明理由.
解析
1、当 $M=\left\{0, \dfrac{\pi}{2}\right\}$ 时,有\[f_2(x)=\sin^2(x-0)+\sin^2\left(x-\dfrac{\pi}2\right)=\sin^2+\cos^2x=1,\]是常数函数.而当 $M=\left\{\dfrac{\pi}{4}, \dfrac{\pi}{2}\right\}$ 时,有\[f_2(x)=\sin^2\left(x-\dfrac{\pi}4\right)+\sin^2\left(x-\dfrac{\pi}2\right)=\dfrac{\sqrt 2}2\sin\left(2x-\dfrac{3\pi}4\right)+1,\]不是常数函数.
2、根据题意,有\[f_3(x)=\dfrac{ 3-\big(\cos(2x-2\theta_1)+\cos(2x-2\theta_2)+\cos(2x-2\theta_3)\big)}2,\]设 $g(x)=\cos(2x-2\theta_1)+\cos(2x-2\theta_2)+\cos(2x-2\theta_3)$,则 $f_3(x)$ 是常函数等价于 $g(x)$ 是常函数,分别令 $x=\theta_1,\theta_2,\theta_3$,可得\[\cos(2\theta_1-2\theta_2)+\cos(2\theta_1-2\theta_3)=\cos(2\theta_2-2\theta_1)+\cos(2\theta_2-2\theta_3)=\cos(2\theta_3-2\theta_1)+\cos(2\theta_3-2\theta_2),\]进而\[\cos(2\theta_1-2\theta_2)=\cos(2\theta_2-2\theta_3)=\cos(2\theta_3-2\theta_1),\]因此 $2\theta_1,2\theta_2,2\theta_3$ 对应的终边两两之间的夹角相等,从而均为 $\dfrac{2\pi}3$.不妨设 $2\theta_1<2\theta_2<2\theta_3$,则\[(\theta_1,\theta_2,\theta_3)=\left(\theta,\theta+\dfrac{\pi}3,\theta+\dfrac{2\pi}3\right),\]其中 $\theta=\dfrac{k\pi}{12}$($k=0,1,2,3,4$),因此所求概率为 $\dfrac{5}{\binom{13}3}=\dfrac 5{286}$.
3、$M=\left\{\theta\mid \theta=\dfrac{k\pi}n,k\in\mathbb N^{\ast},k\leqslant n\right\}$,此时\[\begin{split} f_n(x)&=\sum_{k=1}^n\sin^2\left(x-\dfrac{k\pi}n\right)\\ &=\sum_{k=1}^n\dfrac{1-\cos\left(2x-\dfrac{2k\pi}n\right)}2\\ &=\dfrac n2-\sum_{k=1}^n\dfrac{\cos\left(2x-\dfrac{2k\pi}n\right)\sin\dfrac{\pi}n}{2\sin\dfrac{\pi}n}\\ &=\dfrac n2-\sum_{k=1}^n\dfrac{\sin\left(2x-\dfrac{(2k-1)\pi}n\right)+\sin\left(x-\dfrac{(2k+1)\pi}n\right)}{2\sin\dfrac{\pi}n}\\ &=\dfrac n2+\dfrac{\sin\left(2x-\dfrac{\pi}n\right)-\sin\left(x-\dfrac{(2n+1)\pi}n\right)}{2\sin\dfrac{\pi}n}\\ &=\dfrac n2 ,\end{split}\]为常数函数.