2025年广东深圳宝安区一模数学试卷 #14
记锐角 $\triangle ABC$ 的内角 $A,B,C$ 的对边分别为 $a,b,c$,已知 $\dfrac{\sin (A-B)}{\cos B}=\dfrac{\sin (A-C)}{\cos C}$,且 $a\sin C=1$,则 $\dfrac 1{a^2}+\dfrac 1{b^2}$ 的最大值为 _____.
答案 $\dfrac{25}{16}$.
解析 根据题意,有\[\dfrac{\sin (A-B)}{\cos B}=\dfrac{\sin (A-C)}{\cos C}\implies \dfrac{\sin A\cos B-\cos A\sin B}{\cos B}=\dfrac{\sin A\cos C-\cos A\sin C}{\cos C},\]于是\[\sin A-\cos A\tan B=\sin A-\cos A\tan C\implies \cos A(\tan B-\tan C)=0,\]而 $\triangle ABC$ 是锐角三角形,于是 $\cos A\ne 0$,因此 $B=C$,进而\[\begin{split} \dfrac1{a^2}+\dfrac 1{b^2}&=\dfrac{a^2\sin^2C}{a^2}+\dfrac{a^2\sin^2C}{b^2}\\ &=\sin^2C+\dfrac{\sin^2A\sin^2B}{\sin^2B}\\ &=\sin^2C+\sin^2(\pi-2C)\\ &=\sin^2C+4\sin^2C\cos^2C\\ &=\sin^2C\left(5-4\sin^2C\right)\\ &=\dfrac{4\sin^2C\left(5-4\sin^2C\right)}{4}\\ &\leqslant \dfrac{25}{16} ,\end{split}\]等号当 $\sin^2C=\dfrac 58$ 时取得,因此所求代数式的最大值为 $\dfrac{25}{16}$.